Suppr超能文献

基于病理组学预测模型探讨EZH2表达与肝细胞癌患者预后的关系

Relationship between EZH2 expression and prognosis of patients with hepatocellular carcinoma using a pathomics predictive model.

作者信息

Zhou Xulin, Man Muran, Cui Min, Zhou Xiang, Hu Yan, Liu Qinghua, Deng Youxing

机构信息

Department of Oncology, Hefei BOE Hospital, Hefei, PR China.

Department of Oncology, People's Hospital of Shizhong District, Zaozhuang City, Shandong Province, PR China.

出版信息

Heliyon. 2024 Sep 28;10(20):e38562. doi: 10.1016/j.heliyon.2024.e38562. eCollection 2024 Oct 30.

Abstract

BACKGROUND

Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) is overexpressed in hepatocellular carcinoma, promoting tumorigenesis and correlating with poor prognosis. Traditional histopathological examinations are insufficient to accurately predict hepatocellular carcinoma (HCC) survival; however, pathomics models can predict EZH2 expression and HCC prognosis. This study aimed to investigate the relationship between pathomics features and EZH2 expression for predicting overall survival of patients with HCC.

METHODS

We analyzed 267 patients with HCC from the Cancer Genome Atlas database, with available pathological images and gene expression data. RNA sequencing data were divided into high and low EZH2 expression groups for prognosis and survival analysis. Pathological image features were screened using mRMR_RFE. A pathological model was constructed using a gradient boosting machine (GBM) algorithm, and efficiency evaluation and survival analysis of the model were performed. The R package "survminer" took the pathomics score (PS) cutoff value of 0.4628 to divide the patients into two groups: high and low PS expression. Survival analyses included Kaplan-Meier curve analysis, univariate and multivariate Cox regression analyses, and interaction tests. Potential pathomechanisms were explored through enrichment, differential, immune cell infiltration abundance, and gene mutation analyses.

RESULT

EZH2 was highly expressed in tumor samples but poorly expressed in normal tissue samples. Univariate and multivariate Cox regression analyses revealed that EZH2 was an independent risk factor for HCC (hazard ratio [HR], 2.792 and 3.042, respectively). Seven imaging features were selected to construct a pathomics model to predict EZH2. Decision curve analysis showed that the model had high clinical utility. Multivariate Cox regression analysis showed that high PS expression was an independent risk factor for HCC prognosis (HR, 2.446). The Kaplan-Meier curve showed that high PS expression was a risk factor for overall survival.

CONCLUSION

EZH2 expression can affect the prognosis of patients with liver cancer. Our pathological model could predict EZH2 expression and prognosis of patients with HCC with high accuracy and robustness, making it a new and potentially valuable tool.

摘要

背景

zeste 2 多梳抑制复合体 2 亚基增强子(EZH2)在肝细胞癌中过表达,促进肿瘤发生并与不良预后相关。传统的组织病理学检查不足以准确预测肝细胞癌(HCC)的生存情况;然而,病理组学模型可以预测 EZH2 表达和 HCC 预后。本研究旨在探讨病理组学特征与 EZH2 表达之间的关系,以预测 HCC 患者的总生存期。

方法

我们分析了来自癌症基因组图谱数据库的 267 例 HCC 患者,他们有可用的病理图像和基因表达数据。将 RNA 测序数据分为 EZH2 高表达组和低表达组进行预后和生存分析。使用 mRMR_RFE 筛选病理图像特征。使用梯度提升机(GBM)算法构建病理模型,并对模型进行效率评估和生存分析。R 包“survminer”采用病理组学评分(PS)临界值 0.4628 将患者分为两组:高 PS 表达组和低 PS 表达组。生存分析包括 Kaplan-Meier 曲线分析、单因素和多因素 Cox 回归分析以及交互作用检验。通过富集分析、差异分析、免疫细胞浸润丰度分析和基因突变分析探索潜在的病理机制。

结果

EZH2 在肿瘤样本中高表达,但在正常组织样本中低表达。单因素和多因素 Cox 回归分析显示,EZH2 是 HCC 的独立危险因素(风险比[HR]分别为 2.792 和 3.042)。选择七个影像特征构建预测 EZH2 的病理组学模型。决策曲线分析表明该模型具有较高的临床实用性。多因素 Cox 回归分析显示,高 PS 表达是 HCC 预后的独立危险因素(HR,2.446)。Kaplan-Meier 曲线显示,高 PS 表达是总生存期的危险因素。

结论

EZH2 表达可影响肝癌患者的预后。我们的病理模型能够高精度且稳健地预测 HCC 患者的 EZH2 表达和预后,使其成为一种新的且具有潜在价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c98/11619983/9c016ded03fb/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验