Suppr超能文献

基于单细胞和机器学习分析构建与脂质代谢相关的肝细胞癌风险模型。

Construction of a lipid metabolism-related risk model for hepatocellular carcinoma by single cell and machine learning analysis.

机构信息

Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.

MetaLife Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.

出版信息

Front Immunol. 2023 Mar 1;14:1036562. doi: 10.3389/fimmu.2023.1036562. eCollection 2023.

Abstract

One of the most common cancers is hepatocellular carcinoma (HCC). Numerous studies have shown the relationship between abnormal lipid metabolism-related genes (LMRGs) and malignancies. In most studies, the single LMRG was studied and has limited clinical application value. This study aims to develop a novel LMRG prognostic model for HCC patients and to study its utility for predictive, preventive, and personalized medicine. We used the single-cell RNA sequencing (scRNA-seq) dataset and TCGA dataset of HCC samples and discovered differentially expressed LMRGs between primary and metastatic HCC patients. By using the least absolute selection and shrinkage operator (LASSO) regression machine learning algorithm, we constructed a risk prognosis model with six LMRGs (, , , , , and ). The risk prognosis model was further validated in an external cohort of ICGC. We also constructed a nomogram that could accurately predict overall survival in HCC patients based on cancer status and LMRGs. Further investigation of the association between the LMRG model and somatic tumor mutational burden (TMB), tumor immune infiltration, and biological function was performed. We found that the most frequent somatic mutations in the LMRG high-risk group were , , , , , and . Moreover, naïve CD8+ T cells, common myeloid progenitors, endothelial cells, granulocyte-monocyte progenitors, hematopoietic stem cells, M2 macrophages, and plasmacytoid dendritic cells were significantly correlated with the LMRG high-risk group. Finally, gene set enrichment analysis showed that RNA degradation, spliceosome, and lysosome pathways were associated with the LMRG high-risk group. For the first time, we used scRNA-seq and bulk RNA-seq to construct an LMRG-related risk score model, which may provide insights into more effective treatment strategies for predictive, preventive, and personalized medicine of HCC patients.

摘要

最常见的癌症之一是肝细胞癌(HCC)。许多研究表明,异常脂质代谢相关基因(LMRGs)与恶性肿瘤之间存在关系。在大多数研究中,仅研究了单个 LMRG,其临床应用价值有限。本研究旨在为 HCC 患者开发一种新的 LMRG 预后模型,并研究其在预测、预防和个性化医学中的应用。我们使用 HCC 样本的单细胞 RNA 测序(scRNA-seq)数据集和 TCGA 数据集,发现原发性和转移性 HCC 患者之间差异表达的 LMRGs。通过使用最小绝对收缩和选择算子(LASSO)回归机器学习算法,我们构建了一个包含六个 LMRGs(,,,,,和)的风险预后模型。该风险预后模型在 ICGC 的外部队列中进一步得到验证。我们还构建了一个列线图,可以根据癌症状态和 LMRGs 准确预测 HCC 患者的总生存率。进一步研究了 LMRG 模型与体细胞肿瘤突变负荷(TMB)、肿瘤免疫浸润和生物学功能之间的关系。我们发现 LMRG 高风险组中最常见的体细胞突变是,,,,,和。此外,幼稚 CD8+T 细胞、普通髓样祖细胞、内皮细胞、粒细胞-单核细胞祖细胞、造血干细胞、M2 巨噬细胞和浆细胞样树突状细胞与 LMRG 高风险组显著相关。最后,基因集富集分析表明,RNA 降解、剪接体和溶酶体途径与 LMRG 高风险组相关。这是首次使用 scRNA-seq 和 bulk RNA-seq 构建 LMRG 相关风险评分模型,这可能为预测、预防和个性化医学的 HCC 患者提供更有效的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d1/10014552/ece8ae7d69ca/fimmu-14-1036562-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验