Suppr超能文献

人工智能驱动的肝细胞癌病理组学:当前进展、挑战与展望

Artificial intelligence-driven pathomics in hepatocellular carcinoma: current developments, challenges and perspectives.

作者信息

Ding Wei, Zhang Jinxing, Jin Zhicheng, Hua Hongjin, Zu Qingquan, Yang Shudong, Wang Weidong, Liu Sheng, Zhou Haifeng, Shi Haibin

机构信息

Department of Interventional Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, China.

Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.

出版信息

Discov Oncol. 2025 Jul 28;16(1):1424. doi: 10.1007/s12672-025-03254-z.

Abstract

Hepatocellular carcinoma (HCC) is a highly malignant tumor with elevated incidence and mortality rates globally. Its complex etiology and pronounced heterogeneity present significant challenges in diagnosis and treatment. Recent advancements in artificial intelligence (AI) have demonstrated transformative potential to usher a new wave of precision oncology. Pathomics, an AI-based digital pathology technique, facilitates the extraction of extensive datasets from whole-slide histopathological images, enabling quantitative analyses to improve diagnosis, treatment, and prognostic prediction for HCC. Furthermore, emerging pathological foundation models are revolutionizing traditional paradigms and providing a robust framework for the development of specialized pathomics models tailored to specific clinical tasks in HCC. Despite its promise, pathomics research in HCC remains in its infancy, with clinical implementation hindered by challenges such as data heterogeneity, model interpretability, ethical concerns, regulatory issues, and the absence of standardized industry protocols. Future initiatives should prioritize the conduction of prospective multi-center studies, the integration of multi-modal data, the enhancement of regulatory frameworks, and the establishment of industry-wide standardized guidelines and compliant platform infrastructures to accelerate the clinical adoption of pathomics for personalized HCC treatment.

摘要

肝细胞癌(HCC)是一种高度恶性的肿瘤,在全球范围内发病率和死亡率都在上升。其复杂的病因和显著的异质性给诊断和治疗带来了重大挑战。人工智能(AI)的最新进展已显示出变革潜力,引领了新一轮精准肿瘤学浪潮。病理组学是一种基于AI的数字病理学技术,有助于从全切片组织病理学图像中提取大量数据集,使定量分析能够改善HCC的诊断、治疗和预后预测。此外,新兴的病理学基础模型正在彻底改变传统模式,并为开发针对HCC特定临床任务的专门病理组学模型提供了一个强大的框架。尽管前景广阔,但HCC的病理组学研究仍处于起步阶段,临床应用受到数据异质性、模型可解释性、伦理问题、监管问题以及缺乏标准化行业协议等挑战的阻碍。未来的举措应优先开展前瞻性多中心研究、整合多模态数据、加强监管框架,并建立全行业标准化指南和合规的平台基础设施,以加速病理组学在个性化HCC治疗中的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/367b/12304379/2a341d372eaf/12672_2025_3254_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验