Suppr超能文献

三级医院中全身炎症反应指数(SIRI)、中性粒细胞与淋巴细胞比值(NLR)及血小板与淋巴细胞比值(PLR)对急性冠脉综合征预后的预测作用

The predictive role of Systemic Inflammation Response Index (SIRI), Neutrophil-Lymphocyte Ratio (NLR), and Platelet-Lymphocyte Ratio (PLR) in the prognosis of acute coronary syndrome in a tertiary care hospital.

作者信息

Rajakumar Hamrish Kumar, Coimbatore Sathyabal Varsha, Vasanthan Mannar, Dasarathan Ramesh

机构信息

Government Medical College, Omandurar Government Estate, Chennai, 02, Tamilnadu, India.

Department of General Medicine, Government Medical College, Omandurar Government Estate, Chennai, 02, Tamilnadu, India.

出版信息

Heliyon. 2024 Oct 9;10(20):e39029. doi: 10.1016/j.heliyon.2024.e39029. eCollection 2024 Oct 30.

Abstract

BACKGROUND

& Objective: Acute coronary syndrome (ACS) is a major cause of mortality globally, with significant morbidity and economic impact. This study aimed to correlate the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic inflammatory response index (SIRI) values in ACS patients with their prognosis via the GRACE scoring criteria and to propose the SIRI as a superior inflammatory marker for predicting ACS prognosis.

METHODS

Ethical approval was obtained for a retrospective cross-sectional study, which included patients from the outpatient department and Tamilnadu Accident Emergency Initiative Ward at Government Medical College, Omandurar Government Estate, who were diagnosed with ACS according to American College of Cardiology guidelines from January 2022 to December 2023. We excluded patients with familial hypercholesterolemia, platelet disorders, infections, inflammatory conditions, or incomplete health records. Data on demographics, clinical findings, blood counts, ECGs, cardiac enzymes, echocardiography, serum creatinine, and vital signs were collected and analyzed to calculate the NLR, PLR, SIRI, and GRACE scores. Statistical analyses included Kolmogorov‒Smirnov and Anderson‒Darling tests, Spearman correlation, Kruskal‒Wallis one-way ANOVA, GLM modeling, k-fold cross-validation, and receiver operating characteristic (ROC) curve analysis.

RESULTS

After applying the exclusion criteria, 247 ACS patients were included in the analysis. Significant associations were found between the NLR and the PLR, SIRI, and GRACE scores. The SIRI demonstrated the strongest association, whereas the PLR had the weakest association. All three variables significantly influenced prognostic risk, as determined by the GRACE score. GLM models highlighted the predictive significance of the NLR, PLR, and SIRI in estimating GRACE scores, with the SIRI showing potential superiority. K-fold cross-validation confirmed the superior predictive accuracy and ability of the SIRI to explain a larger proportion of variance in GRACE scores than the NLR and PLR.

CONCLUSIONS

The SIRI emerges as a promising prognostic marker for ACS, outperforming the NLR and PLR. Its ease of calculation from routine hemogram tests underscores its potential clinical utility for risk stratification in ACS management. Further validation and integration into existing risk assessment models could enhance prognosis assessment in ACS patients.

摘要

背景与目的

急性冠状动脉综合征(ACS)是全球范围内主要的死亡原因,具有显著的发病率和经济影响。本研究旨在通过GRACE评分标准,将ACS患者的中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)及全身炎症反应指数(SIRI)值与其预后进行关联,并提出SIRI作为预测ACS预后的更优炎症标志物。

方法

本回顾性横断面研究获得伦理批准,纳入了2022年1月至2023年12月期间在奥曼杜拉尔政府医院政府医学院门诊部和泰米尔纳德邦事故急救倡议病房,根据美国心脏病学会指南被诊断为ACS的患者。我们排除了患有家族性高胆固醇血症、血小板疾病、感染、炎症性疾病或健康记录不完整的患者。收集并分析了人口统计学、临床检查结果、血常规、心电图、心肌酶、超声心动图、血清肌酐和生命体征等数据,以计算NLR、PLR、SIRI和GRACE评分。统计分析包括柯尔莫哥洛夫 - 斯米尔诺夫检验和安德森 - 达林检验、斯皮尔曼相关性分析、克鲁斯卡尔 - 沃利斯单因素方差分析、广义线性模型(GLM)建模、k折交叉验证以及受试者工作特征(ROC)曲线分析。

结果

应用排除标准后,247例ACS患者纳入分析。发现NLR与PLR、SIRI和GRACE评分之间存在显著关联。SIRI显示出最强的关联,而PLR的关联最弱。GRACE评分显示,所有这三个变量均显著影响预后风险。GLM模型突出了NLR、PLR和SIRI在估计GRACE评分方面的预测意义,其中SIRI显示出潜在的优越性。k折交叉验证证实,与NLR和PLR相比,SIRI具有更高的预测准确性和解释GRACE评分中更大比例方差的能力。

结论

SIRI成为ACS有前景的预后标志物,优于NLR和PLR。它易于从常规血常规检查中计算得出,这突出了其在ACS管理风险分层中的潜在临床实用性。进一步验证并整合到现有风险评估模型中可增强ACS患者的预后评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c98/11620114/b9dd7e409d26/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验