Tezekbay Yerbolat, Duisebayev Tolagay, Taubaldiyeva Zhamilya, Abduvalov Alshyn, Nuraje Nurxat, Toktarbaiuly Olzat
Renewable Energy Laboratory, National Laboratory Astana (NLA), Nazarbayev University Astana 010000 Kazakhstan
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University Astana 010000 Kazakhstan.
RSC Adv. 2025 Aug 4;15(34):27586-27593. doi: 10.1039/d5ra03463a. eCollection 2025 Aug 1.
This study reports a systematic investigation into the photoelectrochemical (PEC) performance of GaO/ZnO (GZO) composite thin films fabricated RF magnetron sputtering. GZO films were deposited on FTO/Glass and titanium (Ti) foil substrates, with key fabrication parameters - namely deposition time, annealing gas atmosphere, and annealing temperature - systematically varied to optimize photocatalytic activity. Surface morphology and crystallinity were evaluated using SEM and XRD, respectively, revealing that both deposition time and annealing conditions significantly influence grain structure and crystallinity, which in turn affect PEC performance. Among the tested conditions, films deposited for 25 minutes and annealed in air exhibited optimal performance, with annealing at 600 °C on Ti foil substrates yielding the highest photocurrent density of 1.7 × 10 A cm at 1.23 V RHE. Electrochemical impedance spectroscopy (EIS) confirmed improved charge transfer properties at this temperature, although stability testing indicated potential trade-offs between performance and long-term durability. These findings highlight the critical role of thermal and atmospheric control during post-deposition treatment in tailoring the structural and electronic properties of GZO thin films. The optimized GZO photoanodes demonstrate strong potential for low-cost, efficient, and scalable solar hydrogen production, contributing to the advancement of sustainable energy technologies.
本研究报告了对通过射频磁控溅射制备的GaO/ZnO(GZO)复合薄膜的光电化学(PEC)性能的系统研究。GZO薄膜沉积在FTO/玻璃和钛(Ti)箔基板上,通过系统改变关键制备参数,即沉积时间、退火气体气氛和退火温度,来优化光催化活性。分别使用扫描电子显微镜(SEM)和X射线衍射(XRD)评估表面形态和结晶度,结果表明沉积时间和退火条件均显著影响晶粒结构和结晶度,进而影响PEC性能。在测试条件中,沉积25分钟并在空气中退火的薄膜表现出最佳性能,在Ti箔基板上于600°C退火时,在1.23 V RHE下产生的最高光电流密度为1.7×10 A cm。电化学阻抗谱(EIS)证实了在此温度下电荷转移性能得到改善,尽管稳定性测试表明性能与长期耐久性之间可能存在权衡。这些发现突出了沉积后处理过程中热控制和气氛控制在调整GZO薄膜的结构和电子性能方面的关键作用。优化后的GZO光阳极在低成本、高效且可扩展的太阳能制氢方面展现出强大潜力,为可持续能源技术的发展做出了贡献。