Suppr超能文献

基于 TiO 和 α-FeO 的光阳极用于太阳能水分解 - 1D 纳米结构和组合异质结构的优越作用。

Photoanodes based on TiO and α-FeO for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures.

机构信息

Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.

出版信息

Chem Soc Rev. 2017 Jun 19;46(12):3716-3769. doi: 10.1039/c6cs00015k.

Abstract

Solar driven photoelectrochemical water splitting (PEC-WS) using semiconductor photoelectrodes represents a promising approach for a sustainable and environmentally friendly production of renewable energy vectors and fuel sources, such as dihydrogen (H). In this context, titanium dioxide (TiO) and iron oxide (hematite, α-FeO) are among the most investigated candidates as photoanode materials, mainly owing to their resistance to photocorrosion, non-toxicity, natural abundance, and low production cost. Major drawbacks are, however, an inherently low electrical conductivity and a limited hole diffusion length that significantly affect the performance of TiO and α-FeO in PEC devices. To this regard, one-dimensional (1D) nanostructuring is typically applied as it provides several superior features such as a significant enlargement of the material surface area, extended contact between the semiconductor and the electrolyte and, most remarkably, preferential electrical transport that overall suppress charge carrier recombination and improve TiO and α-FeO photoelectrocatalytic properties. The present review describes various synthetic methods and modifying concepts of 1D-photoanodes (nanotubes, nanorods, nanofibers, nanowires) based on titania, hematite, and on α-FeO/TiO heterostructures, for PEC applications. Various routes towards modification and enhancement of PEC activity of 1D photoanodes are discussed including doping, decoration with co-catalysts and heterojunction engineering. Finally, the challenges related to the optimization of charge transfer kinetics in both oxides are highlighted.

摘要

利用半导体光电化学水分解(PEC-WS)太阳能驱动,代表了一种有前途的可持续和环保的可再生能源载体和燃料来源的生产方法,例如氢气(H)。在这种情况下,二氧化钛(TiO)和氧化铁(赤铁矿,α-FeO)是作为光电阳极材料最受关注的候选材料之一,主要是由于它们对光腐蚀、无毒性、丰富的自然存在和低生产成本的抵抗力。然而,主要的缺点是固有电导率低和空穴扩散长度有限,这极大地影响了 TiO 和 α-FeO 在 PEC 器件中的性能。在这方面,通常应用一维(1D)纳米结构,因为它提供了几个优越的特征,例如材料表面积的显著增大、半导体和电解质之间的扩展接触,以及最重要的是,优先的电传输,这总体上抑制了载流子复合,并改善了 TiO 和 α-FeO 光电催化性能。本综述描述了基于 TiO、α-FeO 和 α-FeO/TiO 异质结构的各种一维光电阳极(纳米管、纳米棒、纳米纤维、纳米线)的合成方法和修饰概念,用于 PEC 应用。讨论了各种提高一维光电阳极 PEC 活性的改性和增强途径,包括掺杂、共催化剂修饰和异质结工程。最后,强调了与优化两种氧化物中的电荷转移动力学相关的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验