Suppr超能文献

基于随机子空间集成的自动发电控制系统中虚假数据注入攻击检测

Random subspace ensemble-based detection of false data injection attacks in automatic generation control systems.

作者信息

Alshareef Sami M

机构信息

Department of Electrical Engineering, Faculty of Engineering, Jouf University, Sakaka, 72388, Saudi Arabia.

出版信息

Heliyon. 2024 Oct 9;10(20):e38881. doi: 10.1016/j.heliyon.2024.e38881. eCollection 2024 Oct 30.

Abstract

Automatic Generation Control (AGC) systems in smart grids are increasingly vulnerable to cyber-attacks, particularly False Data Injection (FDI) attacks, due to their reliance on information and communication technologies. These vulnerabilities pose significant threats to the reliable operation of power systems. To address this challenge, this research paper introduces the machine learning (ML) based cyberattack detection technique designed to identify FDI attacks with the highest accuracy proficiently. The study involves a comprehensive analysis of three features: the original discrete signal feature, the cycle-to-cycle-based feature, and the sample-to-sample-based feature. These features are utilized for detecting FDI attacks and distinguishing them from normal load variations. The research meticulously collects data by simulating diverse FDI attacks, including step attacks, pulse attacks, random attacks, and normal load variation cases on an AGC power system. Four ML classifiers are selected and compared for the classification task. The simulation results reveal that the sample-to-sample-based feature proves highly effective in distinguishing FDI attacks compared to the original signal and cycle-to-cycle-based features. Notably, the results indicate that the random subspace ensemble (RaSE) classifier, utilizing sample-to-sample-based features, effectively identifies and classifies all normal and FDI attacks. This research provides valuable insights into the potential of ML techniques for enhancing FDI attack detection in the AGC of power systems. It provides a potential pathway for overcoming the limitations associated with traditional model-based FDI detection methods.

摘要

由于对信息和通信技术的依赖,智能电网中的自动发电控制(AGC)系统越来越容易受到网络攻击,尤其是虚假数据注入(FDI)攻击。这些漏洞对电力系统的可靠运行构成了重大威胁。为应对这一挑战,本研究论文介绍了基于机器学习(ML)的网络攻击检测技术,旨在高效地以最高准确率识别FDI攻击。该研究对三个特征进行了全面分析:原始离散信号特征、基于周期到周期的特征和基于样本到样本的特征。这些特征用于检测FDI攻击并将其与正常负载变化区分开来。该研究通过在AGC电力系统上模拟各种FDI攻击,包括阶跃攻击、脉冲攻击、随机攻击和正常负载变化情况,精心收集数据。选择并比较了四个ML分类器用于分类任务。仿真结果表明,与原始信号和基于周期到周期的特征相比,基于样本到样本的特征在区分FDI攻击方面证明非常有效。值得注意的是,结果表明,利用基于样本到样本特征的随机子空间集成(RaSE)分类器能够有效地识别和分类所有正常和FDI攻击。本研究为ML技术在增强电力系统AGC中FDI攻击检测方面的潜力提供了有价值的见解。它为克服与传统基于模型的FDI检测方法相关的局限性提供了一条潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edfa/11620118/773eeb368579/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验