Chasapi Margarita, Antolin Pablo, Buffa Annalisa
Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Instituto di Matematica Applicata e Tecnologie Informatiche 'E. Magenes' (CNR), Pavia, Italy.
Eng Comput. 2024;40(6):3623-3650. doi: 10.1007/s00366-024-01980-6. Epub 2024 Apr 29.
This contribution presents a model order reduction framework for real-time efficient solution of trimmed, multi-patch isogeometric Kirchhoff-Love shells. In several scenarios, such as design and shape optimization, multiple simulations need to be performed for a given set of physical or geometrical parameters. This step can be computationally expensive in particular for real world, practical applications. We are interested in geometrical parameters and take advantage of the flexibility of splines in representing complex geometries. In this case, the operators are geometry-dependent and generally depend on the parameters in a non-affine way. Moreover, the solutions obtained from trimmed domains may vary highly with respect to different values of the parameters. Therefore, we employ a local reduced basis method based on clustering techniques and the Discrete Empirical Interpolation Method to construct affine approximations and efficient reduced order models. In addition, we discuss the application of the reduction strategy to parametric shape optimization. Finally, we demonstrate the performance of the proposed framework to parameterized Kirchhoff-Love shells through benchmark tests on trimmed, multi-patch meshes including a complex geometry. The proposed approach is accurate and achieves a significant reduction of the online computational cost in comparison to the standard reduced basis method.
本文提出了一种模型降阶框架,用于实时高效求解裁剪后的多片等几何Kirchhoff-Love壳。在几种情况下,例如设计和形状优化,对于给定的一组物理或几何参数,需要进行多次模拟。这一步骤在计算上可能非常昂贵,特别是对于实际应用。我们关注几何参数,并利用样条在表示复杂几何形状方面的灵活性。在这种情况下,算子依赖于几何形状,并且通常以非仿射方式依赖于参数。此外,从裁剪域获得的解可能会因参数的不同值而有很大差异。因此,我们采用基于聚类技术和离散经验插值法的局部降基方法来构建仿射近似和高效的降阶模型。此外,我们还讨论了降阶策略在参数化形状优化中的应用。最后,我们通过对包括复杂几何形状在内的裁剪多片网格进行基准测试,展示了所提出框架对参数化Kirchhoff-Love壳的性能。与标准降基方法相比,所提出的方法准确且显著降低了在线计算成本。