Zhao Han, Kamensky David, Hwang John T, Chen Jiun-Shyan
Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, Mail Code 0411, La Jolla, CA 92093 USA.
Department of Structural Engineering, University of California San Diego, 9500 Gilman Drive, Mail Code 0085, La Jolla, CA 92093 USA.
Eng Comput. 2024;40(6):3495-3518. doi: 10.1007/s00366-024-01947-7. Epub 2024 Mar 1.
Isogeometric analysis (IGA) has emerged as a promising approach in the field of structural optimization, benefiting from the seamless integration between the computer-aided design (CAD) geometry and the analysis model by employing non-uniform rational B-splines (NURBS) as basis functions. However, structural optimization for real-world CAD geometries consisting of multiple non-matching NURBS patches remains a challenging task. In this work, we propose a unified formulation for shape and thickness optimization of separately parametrized shell structures by adopting the free-form deformation (FFD) technique, so that continuity with respect to design variables is preserved at patch intersections during optimization. Shell patches are modeled with isogeometric Kirchhoff-Love theory and coupled using a penalty-based method in the analysis. We use Lagrange extraction to link the control points associated with the B-spline FFD block and shell patches, and we perform IGA using the same extraction matrices by taking advantage of existing finite element assembly procedures in the FEniCS partial differential equation (PDE) solution library. Moreover, we enable automated analytical derivative computation by leveraging advanced code generation in FEniCS, thereby facilitating efficient gradient-based optimization algorithms. The framework is validated using a collection of benchmark problems, demonstrating its applications to shape and thickness optimization of aircraft wings with complex shell layouts.
等几何分析(IGA)已成为结构优化领域一种很有前景的方法,它通过采用非均匀有理B样条(NURBS)作为基函数,受益于计算机辅助设计(CAD)几何形状与分析模型之间的无缝集成。然而,对于由多个不匹配的NURBS面片组成的实际CAD几何形状进行结构优化仍然是一项具有挑战性的任务。在这项工作中,我们通过采用自由形式变形(FFD)技术,为单独参数化的壳结构的形状和厚度优化提出了一种统一的公式,以便在优化过程中在面片相交处保持相对于设计变量的连续性。壳面片采用等几何Kirchhoff-Love理论建模,并在分析中使用基于罚函数的方法进行耦合。我们使用拉格朗日提取来链接与B样条FFD块和壳面片相关的控制点,并通过利用FEniCS偏微分方程(PDE)求解库中现有的有限元组装程序,使用相同的提取矩阵执行IGA。此外,我们通过利用FEniCS中的高级代码生成实现自动解析导数计算,从而促进基于梯度的高效优化算法。该框架通过一系列基准问题进行了验证,展示了其在具有复杂壳布局的飞机机翼形状和厚度优化中的应用。