基于人体测量学的预测方程,采用多成分模型开发,用于估计运动员的身体成分。

Anthropometric-based predictive equations developed with multi-component models for estimating body composition in athletes.

作者信息

Serafini Sofia, Charrier Davide, Izzicupo Pascal, Esparza-Ros Francisco, Vaquero-Cristóbal Raquel, Petri Cristian, Mecherques-Carini Malek, Baglietto Nicolas, Holway Francis, Tinsley Grant, Paoli Antonio, Campa Francesco

机构信息

Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.

Department of Biomedical Sciences, University of Padua, Via Marzolo, 3, 35131, Padua, Italy.

出版信息

Eur J Appl Physiol. 2025 Mar;125(3):595-610. doi: 10.1007/s00421-024-05672-3. Epub 2024 Dec 6.

Abstract

PURPOSE

Body composition can be estimated using anthropometric-based regression models, which are population-specific and should not be used interchangeably. However, the widespread availability of predictive equations in the literature makes selecting the most valid equations challenging. This systematic review compiles anthropometric-based predictive equations for estimating body mass components, focusing on those developed specifically for athletes using multicomponent models (i.e. separation of body mass into ≥ 3 components).

METHODS

Twenty-nine studies published between 2000 and 2024 were identified through a systematic search of international electronic databases (PubMed and Scopus). Studies using substandard procedures or developing predictive equations for non-athletic populations were excluded.

RESULTS

A total of 40 equations were identified from the 29 studies. Of these, 36 were applicable to males and 17 to females. Twenty-six equations were developed to estimate fat mass, 10 for fat-free mass, three for appendicular lean soft tissue, and one for skeletal muscle mass. Thirteen equations were designed for mixed athletes, while others focused on specific contexts: soccer (n = 8); handball and rugby (n = 3 each); jockeys, swimming, and Gaelic football (n = 2 each); and futsal, padel, basketball, volleyball, American football, karate, and wheelchair athletes (n = 1 each).

CONCLUSIONS

This review presented high-standards anthropometric-based predictive equations for assessing body composition in athletes and encourages the development of new equations for underrepresented sports in the current literature.

摘要

目的

身体成分可以通过基于人体测量学的回归模型进行估计,这些模型因人群而异,不应互换使用。然而,文献中预测方程的广泛可得性使得选择最有效的方程具有挑战性。本系统评价汇编了基于人体测量学的预测方程,用于估计身体质量成分,重点关注那些使用多成分模型(即将体重分离为≥3个成分)专门为运动员开发的方程。

方法

通过对国际电子数据库(PubMed和Scopus)进行系统检索,确定了2000年至2024年间发表的29项研究。排除了使用不合格程序或为非运动员人群开发预测方程的研究。

结果

从29项研究中总共确定了40个方程。其中,36个适用于男性,17个适用于女性。开发了26个方程来估计脂肪量,10个用于去脂体重,3个用于上肢瘦软组织,1个用于骨骼肌质量。13个方程是为混合项目运动员设计的,而其他方程则侧重于特定情境:足球(n = 8);手球和橄榄球(各n = 3);赛马骑师、游泳和盖尔式足球(各n = 2);以及室内五人足球、壁球、篮球、排球、美式足球、空手道和轮椅运动员(各n = 1)。

结论

本综述提出了用于评估运动员身体成分的高标准基于人体测量学的预测方程,并鼓励为当前文献中代表性不足的运动项目开发新的方程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索