Odom J Nicholas, Lee Kyungmi, Harrell Erin R, Watts Kristen Allen, Bechthold Avery C, Engler Sally, Puga Frank, Bibriescas Natashia, Kamal Arif H, Ritchie Christine S, Demiris George, Wright Alexi A, Bakitas Marie A, Azuero Andres
School of Nursing, University of Alabama at Birmingham, 1720 2nd Avenue South, NB 485J, Birmingham, AL, 35294-1210, USA.
Division of Gerontology, Geriatrics, and Palliative Care, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
BMC Cancer. 2025 Apr 4;25(1):614. doi: 10.1186/s12885-025-14009-y.
Managing advanced cancer can be psychologically distressing and burdensome for family caregivers and their care recipients. Innovations in the collection and modelling of passive data from personally-owned smartphones (e.g., GPS), called digital phenotyping, may afford the possibility of remotely monitoring and detecting distress and burden. We explored the potential of using passively-collected GPS data from smartphones to assess and predict caregiver and patient distress and burden.
This exploratory longitudinal cohort study enrolled smartphone-owning family caregiver and patient participants with advanced cancer (August 2021-July 2023) recruited via an oncology clinic or self-referral through Facebook. Participants downloaded a digital phenotyping research app, called Beiwe, that passively collected GPS data for 24 weeks. Participants completed self-report measures (PROs) of anxiety and depressive symptoms (Hospital Anxiety and Depression Scale [HADS]), mental health (PROMIS Mental Health), and caregiver burden (Montgomery-Borgatta Caregiver Burden scale) at baseline and every 6 weeks for 24 weeks. After pre-processing raw GPS data into daily GPS features (e.g., time spent at home, distance traveled/day), computing biweekly moving averages and standard deviations, and conducting a principal components analysis (PCA) of the resulting variables, within-person regression models were used to assess associations between changes in PRO measures and changes in PCA scores, with adjusted-R as the measure of effect size (small = 0.02, medium = 0.13, large = 0.26).
Evaluable data were collected from 48 participants (family caregivers = 32; patients = 16). Caregiver smartphone data explained small-to-medium variance in caregiver anxiety (0.06), depression (0.15), and mental health (0.07). Patient smartphone data predicted small to medium variance in caregiver depressive symptoms (0.12) and burden (0.05). Combined caregiver and patient smartphone data explained small variance in caregiver depressive (0.02) and anxiety symptoms (0.10) and large variance for PROMIS-mental health (0.36) and burden (0.50). For patient outcomes, caregiver smartphone data accounted for small variance in anxiety symptoms (0.07); patient smartphone data predicted large variance in anxiety symptoms (0.24). Combined data explained medium variance in patient depressive symptoms (0.18).
The exploratory study demonstrates the potential predictive utility of using passive smartphone data to detect changes in caregiver and patient psychological distress and burden. A larger study is needed to validate these findings and further explore the clinical application of digital phenotyping in cancer.
对于家庭护理人员及其护理对象而言,管理晚期癌症在心理上可能会造成痛苦且负担沉重。从个人拥有的智能手机(例如全球定位系统)收集被动数据并进行建模的创新方法,即数字表型分析,可能提供远程监测和检测痛苦及负担的可能性。我们探讨了使用智能手机被动收集的全球定位系统数据来评估和预测护理人员及患者的痛苦和负担的潜力。
这项探索性纵向队列研究招募了通过肿瘤诊所或通过脸书自我推荐的拥有智能手机的晚期癌症家庭护理人员和患者参与者(2021年8月至2023年7月)。参与者下载了一款名为“Beiwe”的数字表型研究应用程序,该程序被动收集全球定位系统数据,为期24周。参与者在基线时以及之后的24周内每6周完成一次焦虑和抑郁症状(医院焦虑抑郁量表 [HADS])、心理健康(患者报告结果测量信息系统心理健康量表)以及护理人员负担(蒙哥马利 - 博尔加塔护理人员负担量表)的自我报告测量。在将原始全球定位系统数据预处理为每日全球定位系统特征(例如在家时间、每日出行距离)、计算每两周移动平均值和标准差,并对所得变量进行主成分分析(PCA)之后,使用个体内回归模型来评估患者报告结果测量的变化与主成分分析得分变化之间的关联,以调整决定系数作为效应大小的度量(小 = 0.02,中 = 0.13,大 = 0.26)。
从48名参与者(家庭护理人员 = 32名;患者 = 16名)收集到了可评估数据。护理人员的智能手机数据解释了护理人员焦虑(0.06)、抑郁(0.15)和心理健康(0.07)的小到中等程度的方差。患者的智能手机数据预测了护理人员抑郁症状(0.12)和负担(0.05)的小到中等程度的方差。护理人员和患者的智能手机数据综合起来解释了护理人员抑郁(0.02)和焦虑症状(0.10)的小方差,以及患者报告结果测量信息系统心理健康(0.36)和负担(0.50)的大方差。对于患者的结果,护理人员的智能手机数据占焦虑症状方差的比例较小(0.07);患者的智能手机数据预测焦虑症状的方差较大(0.24)。综合数据解释了患者抑郁症状的中等方差(0.18)。
这项探索性研究证明了使用被动智能手机数据检测护理人员和患者心理痛苦及负担变化的潜在预测效用。需要进行更大规模的研究来验证这些发现,并进一步探索数字表型分析在癌症中的临床应用。