Theofanous Annita, Deligiannakis Yiannis, Louloudi Maria
Laboratory of Biomimetic Catalysis and Hybrid Materials, Department of Chemistry, University of Ioannina, Panepistimioupoli, Ioannina GR-45110, Greece.
Laboratory of Physical Chemistry of Materials and Environment, Department of Physics, University of Ioannina, Panepistimioupoli, Ioannina GR-45110, Greece.
Langmuir. 2024 Dec 17;40(50):26412-26424. doi: 10.1021/acs.langmuir.4c02760. Epub 2024 Dec 7.
Hydrogen atom transfer (HAT) and single electron transfer (SET) are two fundamental pathways for antiradical/antioxidant processes; however, a systematic operational evaluation of the same system is lacking. Herein, we present a comparative study of the HAT and SET processes applied to a library of well-characterized hybrid materials SiO@GA, SiO@GLA, SiO@GLAM, and the doubly hybrid material {GLA@SiO@GLAM}. Hydroxyl radicals (OH), produced by a Fenton system, react via the single electron transfer (SET) pathway and hydrogen atom transfer, through oxygen- and carbon-atoms, respectively, while the stable-radical DPPH via the HAT pathway through oxygen-atoms. Electron paramagnetic resonance spectroscopy (EPR), eminently suited for detection and quantification of free radicals, was used as a state-of-the-art tool to monitor OH using the spin-trapping-EPR method. We found that the SiO@GA hybrid exhibited the highest SET OH-scavenging activity i.e., [2.7 mol of OH per mol of grafted GA]. Then, SiO@GLA, SiO@GLAM, and GLA@SiO@GLAM can scavenge 1.2, 1.3, and 0.57 mol of OH per mol of anchored organic, respectively. The HAT efficiency for SiO@GA was [2.0 mol of DPPH per mol of grafted GA], while SiO@GLA, SiO@GLAM, and GLA@SiO@GLAM exhibited a HAT efficiency of 1.1 DPPH moles per mol of anchored organic. The data are analyzed based on the molecular structure of the organics and their -R-OH moieties. Accordingly, based on the present data we suggest that for hydroxyl (OH) radicals, the mechanisms involved are SET from an oxygen atom and HAT from a carbon atom. In contrast, for DPPH radicals, the HAT mechanism is exclusively operating and involves hydrogen atom abstraction from OH groups.
氢原子转移(HAT)和单电子转移(SET)是抗自由基/抗氧化过程的两种基本途径;然而,目前缺乏对同一体系的系统操作评估。在此,我们对应用于一系列特征明确的杂化材料SiO@GA、SiO@GLA、SiO@GLAM以及双杂化材料{GLA@SiO@GLAM}的HAT和SET过程进行了比较研究。由芬顿体系产生的羟基自由基(OH)分别通过单电子转移(SET)途径以及通过氧原子和碳原子进行氢原子转移来发生反应,而稳定自由基二苯基苦味酰基自由基(DPPH)则通过氧原子经由HAT途径发生反应。电子顺磁共振光谱(EPR)非常适合自由基的检测和定量,被用作一种先进工具,采用自旋捕获 - EPR方法监测OH。我们发现SiO@GA杂化材料表现出最高的SET OH清除活性,即[每摩尔接枝的GA能清除2.7摩尔的OH]。然后,SiO@GLA、SiO@GLAM和GLA@SiO@GLAM每摩尔锚定有机物分别可以清除1.2、1.3和0.57摩尔的OH。SiO@GA的HAT效率为[每摩尔接枝的GA能清除2.0摩尔的DPPH],而SiO@GLA、SiO@GLAM和GLA@SiO@GLAM每摩尔锚定有机物的HAT效率为1.1摩尔DPPH。基于有机物及其 -R-OH部分的分子结构对数据进行了分析。因此,根据目前的数据我们认为,对于羟基(OH)自由基,涉及的机制是从氧原子进行SET以及从碳原子进行HAT。相比之下,对于DPPH自由基,HAT机制是唯一起作用的机制,涉及从OH基团夺取氢原子。