Shelmerdine Susan C, Pauling Cato, Allan Emma, Langan Dean, Ashworth Emily, Yung Ka-Wai, Barber Joy, Haque Saira, Rosewarne David, Woznitza Nick, Ather Sarim, Novak Alex, Theivendran Kanthan, Arthurs Owen J
Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
UCL Great Ormond Street Institute of Child Health, London, UK.
BMJ Open. 2024 Dec 7;14(12):e084448. doi: 10.1136/bmjopen-2024-084448.
Paediatric fractures are common but can be easily missed on radiography leading to potentially serious implications including long-term pain, disability and missed opportunities for safeguarding in cases of inflicted injury. Artificial intelligence (AI) tools to assist fracture detection in adult patients exist, although their efficacy in children is less well known. This study aims to evaluate whether a commercially available AI tool (certified for paediatric use) improves healthcare professionals (HCPs) detection of fractures, and how this may impact patient care in a retrospective simulated study design.
Using a multicentric dataset of 500 paediatric radiographs across four body parts, the diagnostic performance of HCPs will be evaluated across two stages-first without, followed by with the assistance of an AI tool (BoneView, Gleamer) after an interval 4-week washout period. The dataset will contain a mixture of normal and abnormal cases. HCPs will be recruited across radiology, orthopaedics and emergency medicine. We will aim for 40 readers, with ~14 in each subspecialty, half being experienced consultants. For each radiograph HCPs will evaluate presence of a fracture, their confidence level and a suitable simulated management plan. Diagnostic accuracy will be judged against a consensus interpretation by an expert panel of two paediatric radiologists (ground truth). Multilevel logistic modelling techniques will analyse and report diagnostic accuracy outcome measures for fracture detection. Descriptive statistics will evaluate changes in simulated patient management.
This study was granted approval by National Health Service Health Research Authority and Health and Care Research Wales (REC Reference: 22/PR/0334). IRAS Project ID is 274 278. Funding has been provided by the National Institute for Heath and Care Research (NIHR) (Grant ID: NIHR-301322). Findings from this study will be disseminated through peer-reviewed publications, conferences and non-peer-reviewed media and social media outlets.
ISRCTN12921105.
儿童骨折很常见,但在X线检查中很容易被漏诊,从而可能导致包括长期疼痛、残疾以及在遭受虐待的情况下错过保护机会等潜在的严重后果。虽然存在辅助成人患者骨折检测的人工智能(AI)工具,但其在儿童中的有效性尚鲜为人知。本研究旨在通过回顾性模拟研究设计,评估一种市售的AI工具(已获儿科使用认证)是否能提高医疗保健专业人员(HCPs)对骨折的检测能力,以及这可能如何影响患者护理。
使用一个包含四个身体部位的500张儿科X光片的多中心数据集,将分两个阶段评估HCPs的诊断性能——首先在没有AI工具的情况下,然后在间隔4周的洗脱期后,借助AI工具(BoneView,Gleamer)进行评估。该数据集将包含正常和异常病例的混合。将从放射科、骨科和急诊科招募HCPs。我们的目标是招募40名读者,每个亚专业约14名,其中一半是经验丰富的顾问。对于每张X光片,HCPs将评估骨折的存在情况、他们的置信水平以及合适的模拟管理计划。诊断准确性将与由两名儿科放射科医生组成的专家小组的共识解读(真实情况)进行对比判断。多级逻辑建模技术将分析并报告骨折检测的诊断准确性结果指标。描述性统计将评估模拟患者管理的变化。
本研究已获得英国国家医疗服务体系健康研究管理局和威尔士卫生与社会保健研究机构的批准(研究伦理委员会参考号:22/PR/0334)。IRAS项目编号为274278。资金由英国国家健康与社会保健研究所(NIHR)提供(资助编号:NIHR - 301322)。本研究的结果将通过同行评审出版物、会议以及非同行评审媒体和社交媒体渠道进行传播。
ISRCTN12921105。