Suppr超能文献

通过介孔碳负载的高熵金属间化合物中的多位点协同作用加速硝酸盐串联电还原为氨

Accelerating Tandem Electroreduction of Nitrate to Ammonia via Multi-Site Synergy in Mesoporous Carbon-Supported High-Entropy Intermetallics.

作者信息

Zhu Guihua, Bao Weichao, Xie Meng, Qi Chunhong, Xu Fangfang, Jiang Ying, Chen Bingwei, Fan Yuchi, Liu Bin, Wang Lianjun, Jiang Wan, Qiu Pengpeng, Luo Wei

机构信息

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China.

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China.

出版信息

Adv Mater. 2025 Feb;37(5):e2413560. doi: 10.1002/adma.202413560. Epub 2024 Dec 8.

Abstract

The electrochemical nitrate reduction reaction (NO RR) for ammonia (NH) synthesis represents a significant technological advancement, yet it involves a cascade of elementary reactions alongside various intermediates. Thus, the development of multi-site catalysts for enhancing NO RR and understanding the associated reaction mechanisms for NH synthesis is vital. Herein, a versatile approach is presented to construct platinum based high-entropy intermetallic (HEI) library for NH synthesis. The HEI nanoparticles (NPs) are uniformly supported on a 2D nitrogen doped mesoporous carbon (N-mC) framework, featured with adjustable compositions (up to eight elements) and a high degree of atomic order (over 90%). Guided by the density functional theory (DFT) calculations and atomic structural analysis, a quinary PtFeCoNiCu HEI NPs based N-mC catalyst is designed, which demonstrates a large ammonia Faradaic efffciency (>97%) and a remarkable recyclability (>20 cycles) under both acidic and basic conditions. The combined in situ experimental analysis and further DFT calculation suggests that the well-defined multi-sites nature of the HEI NPs cooperate for a tandem reduction mechanism, in which the Pt-X (X represents the other four transition elements) bridging sites offer optimal adsorption for key nitrogen-oxygen species while the Pt sites facilitate the generation and adsorption of *H species.

摘要

用于合成氨的电化学硝酸盐还原反应(NO RR)代表了一项重大的技术进步,但它涉及一系列基元反应以及各种中间体。因此,开发用于增强NO RR的多中心催化剂并理解氨合成的相关反应机制至关重要。在此,提出了一种通用方法来构建用于氨合成的铂基高熵金属间化合物(HEI)库。HEI纳米颗粒(NPs)均匀负载在二维氮掺杂介孔碳(N-mC)框架上,其特点是组成可调(多达八种元素)且原子有序度高(超过90%)。在密度泛函理论(DFT)计算和原子结构分析的指导下,设计了一种基于五元PtFeCoNiCu HEI NPs的N-mC催化剂,该催化剂在酸性和碱性条件下均表现出高氨法拉第效率(>97%)和显著的可循环性(>20次循环)。原位实验分析与进一步的DFT计算相结合表明,HEI NPs明确的多中心性质协同作用于串联还原机制,其中Pt-X(X代表其他四种过渡元素)桥连位点为关键的氮氧物种提供最佳吸附,而Pt位点促进*H物种的生成和吸附。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验