Ye Haotian, Wang Ping, Wang Rui, Wang Jinlin, Xu Xifan, Feng Ran, Wang Tao, Tong Wen-Yi, Liu Fang, Sheng Bowen, Ma Wenjie, An Bingxuan, Li Hongjian, Chen Zhaoying, Duan Chun-Gang, Ge Weikun, Shen Bo, Wang Xinqiang
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
Electron Microscopy Laboratory, School of Physics, Peking University, 100871, Beijing, China.
Nat Commun. 2025 Apr 24;16(1):3863. doi: 10.1038/s41467-025-58975-0.
Polarization engineering has revolutionized the photonic and electronic landscape of III-nitride semiconductors over the past decades. However, recent revelations of giant ferroelectric polarization in wurtzite III-nitrides challenge the long-standing paradigms. Here, we experimentally elucidate the polarization, including its magnitude and orientation, and its relationship to lattice polarity in III-nitrides. Those experimentally determined polarizations exceeding 1 C/m with an upward orientation in metal-polar wurtzite nitride compounds align with recent theoretical predictions. To reconcile these findings, a unified polarization framework is established based on the centrosymmetric layered-hexagonal reference structure. This unified framework redefines the polarization landscape in contemporary GaN heterostructures, quantum structures, and ferroelectric heterostructures. Furthermore, we predict significant tunability and a dramatic increase in sheet carrier concentration in ferroelectric ScAlN/GaN heterostructures, heralding advancements in high-power, high-frequency, and reconfigurable transistors, and non-volatile memories. This work bridges the critical gap in the understanding of polarization in both conventional and ferroelectric wurtzite nitrides, offering fundamental insights and paving the way for next-generation photonic, electronic, and acoustic devices.
在过去几十年中,极化工程彻底改变了III族氮化物半导体的光子学和电子学领域。然而,最近纤锌矿型III族氮化物中巨铁电极化的发现挑战了长期以来的范式。在此,我们通过实验阐明了III族氮化物中的极化,包括其大小和方向,以及它与晶格极性的关系。在金属极性纤锌矿氮化物化合物中,那些实验确定的极化向上且超过1 C/m,这与最近的理论预测相符。为了协调这些发现,基于中心对称的层状六边形参考结构建立了一个统一的极化框架。这个统一框架重新定义了当代氮化镓异质结构、量子结构和铁电异质结构中的极化格局。此外,我们预测铁电ScAlN/GaN异质结构中具有显著的可调性以及面载流子浓度的大幅增加,这预示着高功率、高频和可重构晶体管以及非易失性存储器将取得进展。这项工作弥合了对传统和铁电纤锌矿氮化物极化理解上的关键差距,提供了基础见解,并为下一代光子、电子和声器件铺平了道路。