Suppr超能文献

通过分层迁移学习和切片辅助超推理对粘虫板上的害虫进行持续监测。

Persistent monitoring of insect-pests on sticky traps through hierarchical transfer learning and slicing-aided hyper inference.

作者信息

Fotouhi Fateme, Menke Kevin, Prestholt Aaron, Gupta Ashish, Carroll Matthew E, Yang Hsin-Jung, Skidmore Edwin J, O'Neal Matthew, Merchant Nirav, Das Sajal K, Kyveryga Peter, Ganapathysubramanian Baskar, Singh Asheesh K, Singh Arti, Sarkar Soumik

机构信息

Department of Mechanical Engineering, Iowa State University, Ames, IA, United States.

Department of Computer Science, Iowa State University, Ames, IA, United States.

出版信息

Front Plant Sci. 2024 Nov 22;15:1484587. doi: 10.3389/fpls.2024.1484587. eCollection 2024.

Abstract

INTRODUCTION

Effective monitoring of insect-pests is vital for safeguarding agricultural yields and ensuring food security. Recent advances in computer vision and machine learning have opened up significant possibilities of automated persistent monitoring of insect-pests through reliable detection and counting of insects in setups such as yellow sticky traps. However, this task is fraught with complexities, encompassing challenges such as, laborious dataset annotation, recognizing small insect-pests in low-resolution or distant images, and the intricate variations across insect-pests life stages and species classes.

METHODS

To tackle these obstacles, this work investigates combining two solutions, Hierarchical Transfer Learning (HTL) and Slicing-Aided Hyper Inference (SAHI), along with applying a detection model. HTL pioneers a multi-step knowledge transfer paradigm, harnessing intermediary in-domain datasets to facilitate model adaptation. Moreover, slicing-aided hyper inference subdivides images into overlapping patches, conducting independent object detection on each patch before merging outcomes for precise, comprehensive results.

RESULTS

The outcomes underscore the substantial improvement achievable in detection results by integrating a diverse and expansive in-domain dataset within the HTL method, complemented by the utilization of SAHI.

DISCUSSION

We also present a hardware and software infrastructure for deploying such models for real-life applications. Our results can assist researchers and practitioners looking for solutions for insect-pest detection and quantification on yellow sticky traps.

摘要

引言

有效监测害虫对于保障农业产量和确保粮食安全至关重要。计算机视觉和机器学习的最新进展为通过在诸如黄色粘虫板等装置中可靠地检测和计数昆虫来实现害虫的自动持续监测开辟了重大可能性。然而,这项任务充满复杂性,包括费力的数据集标注、在低分辨率或远距离图像中识别小型害虫以及害虫生命阶段和物种类别之间的复杂差异等挑战。

方法

为克服这些障碍,本研究探讨了结合两种解决方案,即分层迁移学习(HTL)和切片辅助超推理(SAHI),并应用一种检测模型。HTL开创了一种多步骤知识迁移范式,利用领域内中间数据集促进模型适应。此外,切片辅助超推理将图像细分为重叠补丁,在合并结果之前对每个补丁进行独立目标检测,以获得精确、全面的结果。

结果

结果强调了通过在HTL方法中整合多样且广泛的领域内数据集,并辅以SAHI的使用,在检测结果上可实现显著改进。

讨论

我们还提出了一种用于将此类模型部署到实际应用中的硬件和软件基础设施。我们的结果可为寻求黄色粘虫板上害虫检测和量化解决方案的研究人员和从业者提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bb3/11624506/c75afb422824/fpls-15-1484587-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验