Suppr超能文献

利用粘虫板图像分析实现菊苣田昆虫的自动监测

Towards automatic insect monitoring on witloof chicory fields using sticky plate image analysis.

作者信息

Kalfas Ioannis, De Ketelaere Bart, Bunkens Klaartje, Saeys Wouter

机构信息

KU Leuven, Department of Biosystems, MeBioS, Faculty of Bioscience Engineering, Kasteelpark Arenberg 30, Box 2456, Leuven B-3001, Belgium.

Praktijkpunt Landbouw Vlaams-Brabant, Herent, Belgium.

出版信息

Ecol Inform. 2023 Jul;75:102037. doi: 10.1016/j.ecoinf.2023.102037.

Abstract

CONTEXT

Sticky trap catches of agricultural pests can be employed for early hotspot detection, identification, and estimation of pest presence in greenhouses or in the field. However, manual procedures to produce and analyze catch results require substantial time and effort. As a result, much research has gone into creating efficient techniques for remotely monitoring possible infestations. A considerable number of these studies use Artificial Intelligence (AI) to analyze the acquired data and focus on performance metrics for various model architectures. Less emphasis, however, was devoted to the testing of the trained models to investigate how well they would perform under practical, in-field conditions.

OBJECTIVE

In this study, we showcase an automatic and reliable computational method for monitoring insects in witloof chicory fields, while shifting the focus to the challenges of compiling and using a realistic insect image dataset that contains insects with common taxonomy levels.

METHODS

To achieve this, we collected, imaged, and annotated 731 sticky plates - containing 74,616 bounding boxes - to train a YOLOv5 object detection model, concentrating on two pest insects (chicory leaf-miners and wooly aphids) and their two predatory counterparts (ichneumon wasps and grass flies). To better understand the object detection model's actual field performance, it was validated in a practical manner by splitting our image data on the sticky plate level.

RESULTS AND CONCLUSIONS

According to experimental findings, the average mAP score for all dataset classes was 0.76. For both pest species and their corresponding predators, high mAP values of 0.73 and 0.86 were obtained. Additionally, the model accurately forecasted the presence of pests when presented with unseen sticky plate images from the test set.

SIGNIFICANCE

The findings of this research clarify the feasibility of AI-powered pest monitoring in the field for real-world applications and provide opportunities for implementing pest monitoring in witloof chicory fields with minimal human intervention.

摘要

背景

农业害虫的粘虫板诱捕可用于温室或田间害虫早期热点检测、识别及存在情况估计。然而,人工制作和分析诱捕结果的程序需要大量时间和精力。因此,许多研究致力于开发高效的远程监测可能虫害的技术。这些研究中有相当一部分使用人工智能(AI)分析采集的数据,并关注各种模型架构的性能指标。然而,对经过训练的模型进行测试以研究其在实际田间条件下的表现的关注较少。

目的

在本研究中,我们展示了一种用于监测菊苣田中昆虫的自动且可靠的计算方法,同时将重点转向编译和使用包含具有常见分类级别的昆虫的真实昆虫图像数据集所面临的挑战。

方法

为此,我们收集、成像并标注了731个粘虫板(包含74,616个边界框),以训练一个YOLOv5目标检测模型,重点关注两种害虫(菊苣潜叶蝇和棉蚜)及其两种捕食性昆虫(姬蜂和草蝇)。为了更好地了解目标检测模型在实际田间的性能,我们通过在粘虫板级别拆分图像数据对其进行了实际验证。

结果与结论

根据实验结果,所有数据集类别的平均平均精度均值(mAP)分数为0.76。对于两种害虫及其相应的捕食者,均获得了0.73和0.86的高mAP值。此外,当展示来自测试集的未见粘虫板图像时,该模型准确预测了害虫的存在。

意义

本研究结果阐明了人工智能驱动的田间害虫监测在实际应用中的可行性,并为在菊苣田中以最少的人工干预实施害虫监测提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a80/10295114/01a7830b3734/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验