Suppr超能文献

人工智能助力对抗抗菌药物耐药性的新希望。

A New Hope in the Fight Against Antimicrobial Resistance with Artificial Intelligence.

作者信息

Tran Minh-Hoang, Nguyen Ngoc Quy, Pham Hong Tham

机构信息

Department of Pharmacy, Nhan Dan Gia Dinh Hospital, Ho Chi Minh City, Vietnam.

Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.

出版信息

Infect Drug Resist. 2022 May 26;15:2685-2688. doi: 10.2147/IDR.S362356. eCollection 2022.

Abstract

Recent years have witnessed the rise of artificial intelligence (AI) in antimicrobial resistance (AMR) management, implying a positive signal in the fight against antibiotic-resistant microbes. The impact of AI starts with data collection and preparation for deploying AI-driven systems, which can lay the foundation for some effective infection control strategies. Primary applications of AI include identifying potential antimicrobial molecules, rapidly testing antimicrobial susceptibility, and optimizing antibiotic combinations. Aside from their outstanding effectiveness, these applications also express high potential in narrowing the burden gap of AMR among different settings around the world. Despite these benefits, the interpretability of AI-based systems or models remains vague. Attempts to address this issue had led to two novel explanation techniques, but none have shown enough robustness or comprehensiveness to be widely applied in AI and AMR control. A multidisciplinary collaboration between the medical field and advanced technology is therefore needed to partially manage this situation and improve the AI systems' performance and their effectiveness against drug-resistant pathogens, in addition to multiple equity actions for mitigating the failure risks of AI due to a global-scale equity gap.

摘要

近年来,人工智能(AI)在抗菌药物耐药性(AMR)管理中兴起,这意味着在对抗抗生素耐药微生物的斗争中出现了积极信号。人工智能的影响始于为部署人工智能驱动系统而进行的数据收集和准备,这可为一些有效的感染控制策略奠定基础。人工智能的主要应用包括识别潜在的抗菌分子、快速检测抗菌药敏性以及优化抗生素组合。除了具有出色的有效性外,这些应用在缩小全球不同地区AMR的负担差距方面也具有很高的潜力。尽管有这些好处,但基于人工智能的系统或模型的可解释性仍然模糊不清。解决这一问题的尝试产生了两种新颖的解释技术,但都没有表现出足够的稳健性或全面性,无法在人工智能和AMR控制中广泛应用。因此,除了采取多项公平行动以减轻由于全球规模的公平差距导致的人工智能失败风险外,还需要医学领域与先进技术之间的多学科合作来部分解决这种情况,并提高人工智能系统的性能及其对抗耐药病原体的有效性。

相似文献

本文引用的文献

4
A Deep Learning Approach to Antibiotic Discovery.深度学习在抗生素发现中的应用。
Cell. 2020 Feb 20;180(4):688-702.e13. doi: 10.1016/j.cell.2020.01.021.
6
The potential for artificial intelligence in healthcare.人工智能在医疗保健领域的潜力。
Future Healthc J. 2019 Jun;6(2):94-98. doi: 10.7861/futurehosp.6-2-94.
8
Transfer learning for visual categorization: a survey.迁移学习在视觉分类中的应用综述。
IEEE Trans Neural Netw Learn Syst. 2015 May;26(5):1019-34. doi: 10.1109/TNNLS.2014.2330900. Epub 2014 Jul 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验