Suppr超能文献

头影测量方法在三维空间中研究X射线的能力(综述)。

Capabilities of Cephalometric Methods to Study X-rays in Three-Dimensional Space (Review).

作者信息

Ayupova I O, Makhota A Yu, Kolsanov A V, Popov N V, Davidyuk M A, Nekrasov I A, Romanova P A, Khamadeeva A M

机构信息

MD, PhD, Associate Professor, Department of Pediatric Dentistry and Orthodontics; Samara State Medical University, 89 Chapayevskaya St., Samara, 443099, Russia.

Student, Institute of Dentistry; Samara State Medical University, 89 Chapayevskaya St., Samara, 443099, Russia.

出版信息

Sovrem Tekhnologii Med. 2024;16(3):62-73. doi: 10.17691/stm2024.16.3.07. Epub 2024 Jun 28.

Abstract

was a systematic review of modern methods of three-dimensional cephalometric analysis, and the assessment of their efficiency. The scientific papers describing modern diagnostic methods of MFA in dental practice were searched in databases PubMed, Web of Science, eLIBRARY.RU, as well as in a searching system Google Scholar by the following key words: three-dimensional cephalometry, three-dimensional cephalometric analysis, orthodontics, asymmetric deformities, maxillofacial anomalies, 3D cephalometry, CBCT. The literature analysis showed many methods of cephalometric analysis described as three-dimensional to use two-dimensional reformates for measurements. True three-dimensional methods are not applicable for practical purposes due to the fragmentary nature of the studies. There is the disunity in choosing landmarks and supporting planes that makes the diagnosis difficult and costly. The major issue is the lack of uniform standards for tree-dimensional measurements of anatomical structures of the skull, and the data revealed can be compared to them. In this regard, the use of artificial neuron networks and in-depth study technologies to process three-dimensional images and determining standard indicators appear to be promising.

摘要

这是一篇关于三维头影测量分析现代方法及其效率评估的系统综述。在PubMed、Web of Science、eLIBRARY.RU数据库以及谷歌学术搜索系统中,通过以下关键词搜索了描述牙科实践中MFA现代诊断方法的科学论文:三维头影测量、三维头影测量分析、正畸学、不对称畸形、颌面畸形、3D头影测量、CBCT。文献分析表明,许多被描述为三维的头影测量分析方法使用二维重建图像进行测量。由于研究的碎片化性质,真正的三维方法不适用于实际目的。在选择标志点和支持平面方面存在不统一,这使得诊断困难且成本高昂。主要问题是缺乏颅骨解剖结构三维测量的统一标准,且所揭示的数据无法与之进行比较。在这方面,使用人工神经网络和深入学习技术来处理三维图像并确定标准指标似乎很有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5111/11618529/c3c4f0ab4d26/STM-16-3-07-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验