Suppr超能文献

在基于VPN的无线回程网络上为医疗系统实施联邦学习。

Implementing federated learning over VPN-based wireless backhaul networks for healthcare systems.

作者信息

Mahmood Atif, Hakim Azizul Zati, Zakariah Mohammed, Brahim Belhaouari Samir, Altameem Ayman, Ramli Roziana, Almazyad Abdulaziz S, Mat Kiah Miss Laiha, Azzuhri Saaidal Razalli

机构信息

Department of Computer System & Technology, Faculty of Computer Science & Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia.

School of Systems and Technology, Department of Software Engineering, University of Management & Technology, Lahore, Pakistan.

出版信息

PeerJ Comput Sci. 2024 Nov 13;10:e2422. doi: 10.7717/peerj-cs.2422. eCollection 2024.

Abstract

Federated learning (FL) is a popular method where edge devices work together to train machine learning models. This study introduces an efficient network for analyzing healthcare records. It uses VPN technology and applies a federated learning approach over a wireless backhaul network. The study compares different wireless backhaul channels, including terahertz (THz), E/V band (mmWave), and microwave, for their effectiveness. We looked closely at a suggested FL network that uses VPN technology over awireless backhaul network. We compared it with the standard method and found that using the FedAvg algorithm with Terahertz (THz) for communication gave the best accuracy. The time it took to reach a conclusion improved a lot, going from 55 seconds to an impressive 38 seconds. This emphasizes how having a faster communication link makes FL networks work much better. Furthermore, a three-step plan was executed to boost security, adopting a multi-layered method to safeguard the FL network and its confidential data. The first step involves integrating a private network into the current telecom infrastructure, establishing an initial layer of security. To enhance security further, licensed frequency channels are introduced, providing an extra layer of protection. The highest level of security is achieved by combining a private network with licensed frequency channels, complemented by an additional layer of security through VPN-based measures. This comprehensive strategy ensures the application of strong security protocols.

摘要

联邦学习(FL)是一种流行的方法,边缘设备通过它协同工作来训练机器学习模型。本研究引入了一种用于分析医疗记录的高效网络。它使用VPN技术,并在无线回程网络上应用联邦学习方法。该研究比较了不同的无线回程信道,包括太赫兹(THz)、E/V频段(毫米波)和微波,以评估它们的有效性。我们仔细研究了一种建议的在无线回程网络上使用VPN技术的FL网络。我们将其与标准方法进行比较,发现使用联邦平均(FedAvg)算法并通过太赫兹(THz)进行通信能获得最佳准确率。得出结论所需的时间大幅缩短,从55秒缩短至令人印象深刻的38秒。这凸显了拥有更快的通信链路能使FL网络运行得更好。此外,还执行了一个三步计划来增强安全性,采用多层方法来保护FL网络及其机密数据。第一步是将专用网络集成到当前的电信基础设施中,建立初始安全层。为了进一步增强安全性,引入了许可频率信道,提供额外的保护层。通过将专用网络与许可频率信道相结合,并辅以基于VPN的额外安全层,实现了最高级别的安全。这种全面的策略确保了强大安全协议的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1de4/11622844/831a9ff2e86d/peerj-cs-10-2422-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验