Suppr超能文献

通过先进的机器学习模型评估端粒酶特征在乳腺癌中的预后潜力。

Evaluating the prognostic potential of telomerase signature in breast cancer through advanced machine learning model.

作者信息

Guo Xiao, Cao Yuyan, Shi Xinlin, Xing Jiaying, Feng Chuanbo, Wang Tao

机构信息

School of Pharmacy, Beihua University, Jilin, Jilin, China.

Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.

出版信息

Front Immunol. 2024 Nov 28;15:1462953. doi: 10.3389/fimmu.2024.1462953. eCollection 2024.

Abstract

BACKGROUND

Breast cancer prognosis remains a significant challenge due to the disease's molecular heterogeneity and complexity. Accurate predictive models are critical for improving patient outcomes and tailoring personalized therapies.

METHODS

We developed a Machine Learning-assisted Telomerase Signature (MLTS) by integrating multi-omics data from nine independent breast cancer datasets. Using multiple machine learning algorithms, we identified six telomerase-related genes significantly associated with patient survival. The predictive performance of MLTS was evaluated against 66 existing breast cancer prognostic models across diverse cohorts.

RESULTS

The MLTS demonstrated superior predictive accuracy, stability, and reliability compared to other models. Patients with high MLTS scores exhibited increased tumor mutational burden, chromosomal instability, and poor survival outcomes. Single-cell RNA sequencing analysis further revealed higher MLTS scores in aneuploid tumor cells, suggesting a role in cancer progression. Immune profiling indicated distinct tumor microenvironment characteristics associated with MLTS scores, potentially guiding therapeutic decisions.

CONCLUSIONS

Our findings highlight the utility of MLTS as a robust prognostic biomarker for breast cancer. The ability of MLTS to predict patient outcomes and its association with key genomic and cellular features underscore its potential as a target for personalized therapy. Future research may focus on integrating MLTS with additional molecular signatures to enhance its clinical application in precision oncology.

摘要

背景

由于乳腺癌的分子异质性和复杂性,其预后仍然是一项重大挑战。准确的预测模型对于改善患者预后和制定个性化治疗方案至关重要。

方法

我们通过整合来自九个独立乳腺癌数据集的多组学数据,开发了一种机器学习辅助端粒酶特征(MLTS)。使用多种机器学习算法,我们鉴定出六个与患者生存显著相关的端粒酶相关基因。针对不同队列中的66种现有的乳腺癌预后模型,评估了MLTS的预测性能。

结果

与其他模型相比,MLTS表现出卓越的预测准确性、稳定性和可靠性。MLTS评分高的患者表现出肿瘤突变负担增加、染色体不稳定和较差的生存结果。单细胞RNA测序分析进一步揭示非整倍体肿瘤细胞中的MLTS评分更高,表明其在癌症进展中起作用。免疫分析表明与MLTS评分相关的独特肿瘤微环境特征,可能指导治疗决策。

结论

我们的研究结果突出了MLTS作为一种强大的乳腺癌预后生物标志物的实用性。MLTS预测患者预后的能力及其与关键基因组和细胞特征的关联强调了其作为个性化治疗靶点的潜力。未来的研究可能集中于将MLTS与其他分子特征整合,以增强其在精准肿瘤学中的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa3/11634871/ccb420ea62c0/fimmu-15-1462953-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验