Suppr超能文献

应用人工智能技术预测乳腺癌复发风险:一项系统综述。

Application of Artificial Intelligence Techniques to Predict Risk of Recurrence of Breast Cancer: A Systematic Review.

作者信息

Mazo Claudia, Aura Claudia, Rahman Arman, Gallagher William M, Mooney Catherine

机构信息

UCD School of Computer Science, University College Dublin, D04 V1W8 Dublin, Ireland.

UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland.

出版信息

J Pers Med. 2022 Sep 13;12(9):1496. doi: 10.3390/jpm12091496.

Abstract

Breast cancer is the most common disease among women, with over 2.1 million new diagnoses each year worldwide. About 30% of patients initially presenting with early stage disease have a recurrence of cancer within 10 years. Predicting who will have a recurrence and who will not remains challenging, with consequent implications for associated treatment. Artificial intelligence strategies that can predict the risk of recurrence of breast cancer could help breast cancer clinicians avoid ineffective overtreatment. Despite its significance, most breast cancer recurrence datasets are insufficiently large, not publicly available, or imbalanced, making these studies more difficult. This systematic review investigates the role of artificial intelligence in the prediction of breast cancer recurrence. We summarise common techniques, features, training and testing methodologies, metrics, and discuss current challenges relating to implementation in clinical practice. We systematically reviewed works published between 1 January 2011 and 1 November 2021 using the methodology of Kitchenham and Charter. We leveraged Springer, Google Scholar, PubMed, and IEEE search engines. This review found three areas that require further work. First, there is no agreement on artificial intelligence methodologies, feature predictors, or assessment metrics. Second, issues such as sampling strategies, missing data, and class imbalance problems are rarely addressed or discussed. Third, representative datasets for breast cancer recurrence are scarce, which hinders model validation and deployment. We conclude that predicting breast cancer recurrence remains an open problem despite the use of artificial intelligence.

摘要

乳腺癌是女性中最常见的疾病,全球每年有超过210万例新诊断病例。约30%最初表现为早期疾病的患者在10年内会出现癌症复发。预测谁会复发、谁不会复发仍然具有挑战性,这对相关治疗产生了影响。能够预测乳腺癌复发风险的人工智能策略可以帮助乳腺癌临床医生避免无效的过度治疗。尽管其意义重大,但大多数乳腺癌复发数据集规模不足、不公开或不均衡,使得这些研究更加困难。本系统综述调查了人工智能在预测乳腺癌复发中的作用。我们总结了常见技术、特征、训练和测试方法、指标,并讨论了与临床实践实施相关的当前挑战。我们使用Kitchenham和Charter的方法系统地回顾了2011年1月1日至2021年11月1日期间发表的作品。我们利用了施普林格、谷歌学术、PubMed和IEEE搜索引擎。本综述发现了三个需要进一步研究的领域。第一,在人工智能方法、特征预测器或评估指标上没有达成共识。第二,采样策略、缺失数据和类不平衡问题等很少得到解决或讨论。第三,乳腺癌复发的代表性数据集稀缺,这阻碍了模型验证和部署。我们得出结论,尽管使用了人工智能,但预测乳腺癌复发仍然是一个未解决的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5d/9500690/971012573526/jpm-12-01496-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验