Suppr超能文献

利用数字举措改善糖尿病管理的健康结局:一项观察性患者项目。

Harnessing Digital Initiatives for Improved Health Outcomes in Diabetes Management: An Observational Patient Program.

作者信息

Sethi Bipin, Seshadri Krishna, Deshmukh Vaishali, Ag Unnikrishnan, Baruah Manash, Phatak Sanjeev, Ghosal Samit, Chittawar Sachin, Aggarwal Khushboo, Hs Bharath, Sada Prashant

机构信息

Endocrinology, CARE Hospitals & Transplant Centre and CARE Hospitals, Outpatient Centre, Hyderabad, IND.

Endocrinology, Apollo Speciality Hospital, Chennai, IND.

出版信息

Cureus. 2024 Nov 5;16(11):e73093. doi: 10.7759/cureus.73093. eCollection 2024 Nov.

Abstract

INTRODUCTION

Patients with diabetes have easy access to a wide range of digital applications that may help with self-management and lower barriers; however, robust evidence of their effectiveness remains somewhat elusive. Zyla is a medical artificial intelligence (AI)-based personalized care management app that assists the treating physician in improving the standard of patient care by offering the patients comprehensive and individualized care. This preliminary evaluation of data collected through the Zyla app aims to understand the impact of diabetes disease outcomes among patients subscribed to this app.

METHODS

This was a retrospective, observational program conducted through the Zyla app in the calendar year 2020. The Zyla app's objective is to assist the treating physician in improving the standard of patient care by giving them the choice of assembling a personalized team (consisting of clinical nutritionists, physiotherapists, and counselors over a virtual platform) that can offer patients comprehensive and individualized care. Data on parameters like glycated hemoglobin (HbA1c), fasting blood sugar (FBS), post-prandial glucose (PPG), serum creatinine (SC), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were collected through the Zyla app. Clinical outcomes assessed were the change from baseline to last reported levels of the mentioned parameters and are reported using descriptive analysis.

RESULTS

The glycemic control parameters, HbA1c (change from baseline (CFB): -1.08), FBS (CFB: -15.93), and PPG levels (-18.42), were significantly lower (<0.0001) at the last assessment compared with baseline. For the lipid profile, levels of TGs (<0.0001) and TC ( = 0.0037) were significantly lower compared with baseline, while HDL-C levels were comparatively higher (CFB: 0.68) and LDL-C levels were lower (CFB:11.60), however non-significant. Serum creatinine was also lower compared to baseline (CFB: -0.25); however, the difference was not statistically significant.

CONCLUSIONS

A significant improvement in all glycemic parameters was seen with the use of the Zyla app along with numerical improvements in kidney function parameters and cholesterol status among patients. These preliminary findings warrant further rigorous studies to validate the impact of medical apps in the management of diabetics in India.

摘要

引言

糖尿病患者能够轻松使用各种数字应用程序,这些应用程序可能有助于自我管理并降低障碍;然而,其有效性的有力证据仍有些难以捉摸。Zyla是一款基于医学人工智能(AI)的个性化护理管理应用程序,通过为患者提供全面且个性化的护理,协助主治医生提高患者护理标准。本次对通过Zyla应用程序收集的数据进行的初步评估旨在了解订阅该应用程序的患者中糖尿病疾病结局的影响。

方法

这是一项在2020日历年通过Zyla应用程序开展的回顾性观察项目。Zyla应用程序的目标是通过让主治医生能够选择组建一个个性化团队(由临床营养师、物理治疗师和顾问组成,通过虚拟平台)来协助主治医生提高患者护理标准,该团队可为患者提供全面且个性化的护理。通过Zyla应用程序收集糖化血红蛋白(HbA1c)、空腹血糖(FBS)、餐后血糖(PPG)、血清肌酐(SC)、总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)等参数的数据。评估的临床结局是上述参数从基线到最后报告水平的变化,并使用描述性分析进行报告。

结果

与基线相比,在最后一次评估时,血糖控制参数糖化血红蛋白(从基线变化(CFB):-1.08)、空腹血糖(CFB:-15.93)和餐后血糖水平(-18.42)显著更低(<0.0001)。对于血脂情况,甘油三酯水平(<0.0001)和总胆固醇水平(=0.0037)与基线相比显著更低,而高密度脂蛋白胆固醇水平相对更高(CFB:0.68),低密度脂蛋白胆固醇水平更低(CFB:11.60),但无统计学意义。血清肌酐也比基线更低(CFB:-0.25);然而,差异无统计学意义。

结论

使用Zyla应用程序后,所有血糖参数均有显著改善,同时患者的肾功能参数和胆固醇状况也有数值上的改善。这些初步发现需要进一步严格研究,以验证医疗应用程序在印度糖尿病管理中的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/11621240/51abe13b13b0/cureus-0016-00000073093-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验