Suppr超能文献

CHARMER:检测并协调跨组织和Hi-C实验方案的高可信度染色质相互作用

CHARMER: detecting and harmonizing high-confidence chromatin interactions across tissues and Hi-C protocols.

作者信息

Cole Simon, Kuksa Pavel P, Cifello Jeffrey, Valladares Otto, Leung Yuk Yee, Wang Li-San

机构信息

Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania.

Embry-Riddle Aeronautical University.

出版信息

bioRxiv. 2024 Nov 26:2024.11.25.625258. doi: 10.1101/2024.11.25.625258.

Abstract

MOTIVATION

Chromatin conformation capture experiments (CCC), such as Hi-C and Capture Hi-C (CHiC) work to elucidate the three-dimensional organization of the genome and the underlying epigenetic regulatory structures within. CCC experiments produce large amounts of FASTQ sequencing data with a substantial amount of technical noise and require sophisticated computational pipelines in order to extract meaningful results. Large-scale CCC data repositories like 4D Nucleome and ENCODE mostly provide raw contact information but lack annotated, statistically significant interaction data suitable for downstream genetic and genomic analyses.

RESULTS

Here, we present CHARMER, an end-to-end pipeline integrated across multiple CCC assay types (HiC, CHiC) which generates statistically significant, harmonized, queryable, chromatin interactions in a consistent BED-like format across cell/tissue types and CCC assays.

AVAILABILITY

CHARMER is freely available at https://bitbucket.org/wanglab-upenn/CHARMER and harmonized chromatin interaction data will be available in the upcoming version of the FILER database (https://lisanwanglab.org/FILER).

摘要

动机

染色质构象捕获实验(CCC),如Hi-C和捕获Hi-C(CHiC),致力于阐明基因组的三维组织以及其中潜在的表观遗传调控结构。CCC实验会产生大量带有大量技术噪声的FASTQ测序数据,并且需要复杂的计算流程才能提取有意义的结果。像4D核体和ENCODE这样的大规模CCC数据存储库大多只提供原始的接触信息,但缺乏适合下游遗传和基因组分析的注释化、具有统计学意义的相互作用数据。

结果

在此,我们展示了CHARMER,这是一个跨多种CCC检测类型(HiC、CHiC)整合的端到端流程,它能在不同细胞/组织类型和CCC检测中,以一致的类似BED格式生成具有统计学意义、经过协调、可查询的染色质相互作用。

可用性

CHARMER可在https://bitbucket.org/wanglab-upenn/CHARMER免费获取,并且经过协调的染色质相互作用数据将在即将发布的FILER数据库版本(https://lisanwanglab.org/FILER)中提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af67/11623617/ce8f196f1351/nihpp-2024.11.25.625258v1-f0001.jpg

相似文献

1
2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
3
TECM-ChI: A TECM network-based method for chromatin interaction prediction.
Gene. 2025 Sep 15;965:149656. doi: 10.1016/j.gene.2025.149656. Epub 2025 Jul 11.
5
Quantifying conformational heterogeneity of 3D genome organization in fruit fly.
PLoS One. 2025 Jul 3;20(7):e0326927. doi: 10.1371/journal.pone.0326927. eCollection 2025.
6
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
8
Quantifying Conformational Heterogeneity of 3D Genome Organization in Fruit Fly.
bioRxiv. 2025 May 27:2025.05.24.655945. doi: 10.1101/2025.05.24.655945.
9
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.

本文引用的文献

1
Implicating type 2 diabetes effector genes in relevant metabolic cellular models using promoter-focused Capture-C.
Diabetologia. 2024 Dec;67(12):2740-2753. doi: 10.1007/s00125-024-06261-x. Epub 2024 Sep 6.
2
hipFG: high-throughput harmonization and integration pipeline for functional genomics data.
Bioinformatics. 2023 Nov 1;39(11). doi: 10.1093/bioinformatics/btad673.
3
Determining chromatin architecture with Micro Capture-C.
Nat Protoc. 2023 Jun;18(6):1687-1711. doi: 10.1038/s41596-023-00817-8. Epub 2023 Mar 29.
4
The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data.
Nat Commun. 2022 May 2;13(1):2365. doi: 10.1038/s41467-022-29697-4.
5
New insights into the genetic etiology of Alzheimer's disease and related dementias.
Nat Genet. 2022 Apr;54(4):412-436. doi: 10.1038/s41588-022-01024-z. Epub 2022 Apr 4.
6
FILER: a framework for harmonizing and querying large-scale functional genomics knowledge.
NAR Genom Bioinform. 2022 Jan 14;4(1):lqab123. doi: 10.1093/nargab/lqab123. eCollection 2022 Mar.
7
Defining genome architecture at base-pair resolution.
Nature. 2021 Jul;595(7865):125-129. doi: 10.1038/s41586-021-03639-4. Epub 2021 Jun 9.
8
HIPPIE2: a method for fine-scale identification of physically interacting chromatin regions.
NAR Genom Bioinform. 2020 Jun;2(2):lqaa022. doi: 10.1093/nargab/lqaa022. Epub 2020 Mar 31.
9
Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2.
Nat Protoc. 2020 Mar;15(3):991-1012. doi: 10.1038/s41596-019-0273-0. Epub 2020 Jan 24.
10
New developments on the Encyclopedia of DNA Elements (ENCODE) data portal.
Nucleic Acids Res. 2020 Jan 8;48(D1):D882-D889. doi: 10.1093/nar/gkz1062.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验