Liu Bingxu, Greenwood Nathan F, Bonzanini Julia E, Motmaen Amir, Sharp Jazmin, Wang Chunyu, Visani Gian Marco, Vafeados Dionne K, Roullier Nicole, Nourmohammad Armita, Garcia K Christopher, Baker David
Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
bioRxiv. 2024 Nov 28:2024.11.28.625793. doi: 10.1101/2024.11.28.625793.
Class I MHC molecules present peptides derived from intracellular antigens on the cell surface for immune surveillance, and specific targeting of these peptide-MHC (pMHC) complexes could have considerable utility for treating diseases. Such targeting is challenging as it requires readout of the few outward facing peptide antigen residues and the avoidance of extensive contacts with the MHC carrier which is present on almost all cells. Here we describe the use of deep learning-based protein design tools to design small proteins that arc above the peptide binding groove of pMHC complexes and make extensive contacts with the peptide. We identify specific binders for ten target pMHCs which when displayed on yeast bind the on-target pMHC tetramer but not closely related peptides. For five targets, incorporation of designs into chimeric antigen receptors leads to T-cell activation by the cognate pMHC complexes well above the background from complexes with peptides derived from proteome. Our approach can generate high specificity binders starting from either experimental or predicted structures of the target pMHC complexes, and should be widely useful for both protein and cell based pMHC targeting.
I类主要组织相容性复合体(MHC)分子将源自细胞内抗原的肽呈递到细胞表面以进行免疫监视,而对这些肽-MHC(pMHC)复合物的特异性靶向可能在疾病治疗中具有相当大的效用。这种靶向具有挑战性,因为它需要读出少数向外的肽抗原残基,并避免与几乎所有细胞上都存在的MHC载体进行广泛接触。在这里,我们描述了使用基于深度学习的蛋白质设计工具来设计小蛋白,这些小蛋白位于pMHC复合物的肽结合槽上方,并与肽进行广泛接触。我们确定了十种目标pMHC的特异性结合剂,当它们展示在酵母上时,能结合靶向pMHC四聚体,但不结合密切相关的肽。对于五个靶点,将设计整合到嵌合抗原受体中会导致同源pMHC复合物激活T细胞,其激活水平远高于与源自蛋白质组的肽的复合物产生的背景水平。我们的方法可以从目标pMHC复合物的实验结构或预测结构出发生成高特异性结合剂,并且对于基于蛋白质和细胞的pMHC靶向都应该具有广泛的用途。