Suppr超能文献

用于持续监测喉部肌肉的人工智能增强且经过运动校正的无线近红外传感系统。

AI-boosted and motion-corrected, wireless near-infrared sensing system for continuously monitoring laryngeal muscles.

作者信息

Liu Yihan, Putcha Arjun, Lyda Gavin, Peng Nanqi, Pai Salil, Nguyen Tien, Xing Sicheng, Peng Shang, Fan Yiyang, Wu Yizhang, Xie Wanrong, Bai Wubin

机构信息

Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599.

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599.

出版信息

Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2410750121. doi: 10.1073/pnas.2410750121. Epub 2024 Dec 9.

Abstract

Neuromuscular diseases pose significant health and economic challenges, necessitating innovative monitoring technologies for personalizable treatment. Existing devices detect muscular motions either indirectly from mechanoacoustic signatures on skin surface or via ultrasound waves that demand specialized skin adhesion. Here, we report a wireless wearable system, Laryngeal Health Monitor (LaHMo), designed to be conformally placed on the neck for continuously measuring movements of underlying muscles. The system uses near-infrared (NIR) light that features deep-tissue penetration and strong interaction with myoglobin to capture muscular locomotion. The incorporated inertial measurement unit sensor further decouples the superposition of signals from NIR recordings. Integrating a multimodal AI-boosted algorithm based on recurrent neural network, the system accurately classifies activities of physiological events. An adaptive model enables fast individualization without enormous data sources from the target user, facilitating its broad applicability. Long-term tests and simulations suggest the potential efficacy of the LaHMo platform for real-world applications, such as monitoring disease progression in neuromuscular disorders, evaluating treatment efficacy, and providing biofeedback for rehabilitation exercises. The LaHMo platform may serve as a general noninvasive, user-friendly solution for assessing neuromuscular function beyond the anterior neck, potentially improving diagnostics and treatment of various neuromuscular disorders.

摘要

神经肌肉疾病带来了重大的健康和经济挑战,因此需要创新的监测技术来实现个性化治疗。现有的设备要么通过皮肤表面的机械声学特征间接检测肌肉运动,要么通过需要特殊皮肤粘附的超声波来检测。在此,我们报告一种无线可穿戴系统——喉部健康监测器(LaHMo),其设计为可贴合放置在颈部,用于连续测量深层肌肉的运动。该系统使用具有深层组织穿透能力且与肌红蛋白有强相互作用的近红外(NIR)光来捕捉肌肉运动。内置的惯性测量单元传感器进一步解耦了近红外记录信号的叠加。该系统集成了基于递归神经网络的多模态人工智能增强算法,能够准确分类生理事件的活动。一种自适应模型无需来自目标用户的大量数据源就能实现快速个性化,这有利于其广泛应用。长期测试和模拟表明,LaHMo平台在现实世界应用中具有潜在功效,例如监测神经肌肉疾病的病情进展、评估治疗效果以及为康复锻炼提供生物反馈。LaHMo平台可能成为一种通用的非侵入性、用户友好的解决方案,用于评估颈部前方以外的神经肌肉功能,有可能改善各种神经肌肉疾病的诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c85/11665861/a4c261b390b2/pnas.2410750121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验