Suppr超能文献

用于 COVID-19 患者临床和家庭环境中呼吸生物标志物和生命体征的自动化、多参数监测。

Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients.

机构信息

Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208.

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708.

出版信息

Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2026610118.

Abstract

Capabilities in continuous monitoring of key physiological parameters of disease have never been more important than in the context of the global COVID-19 pandemic. Soft, skin-mounted electronics that incorporate high-bandwidth, miniaturized motion sensors enable digital, wireless measurements of mechanoacoustic (MA) signatures of both core vital signs (heart rate, respiratory rate, and temperature) and underexplored biomarkers (coughing count) with high fidelity and immunity to ambient noises. This paper summarizes an effort that integrates such MA sensors with a cloud data infrastructure and a set of analytics approaches based on digital filtering and convolutional neural networks for monitoring of COVID-19 infections in sick and healthy individuals in the hospital and the home. Unique features are in quantitative measurements of coughing and other vocal events, as indicators of both disease and infectiousness. Systematic imaging studies demonstrate correlations between the time and intensity of coughing, speaking, and laughing and the total droplet production, as an approximate indicator of the probability for disease spread. The sensors, deployed on COVID-19 patients along with healthy controls in both inpatient and home settings, record coughing frequency and intensity continuously, along with a collection of other biometrics. The results indicate a decaying trend of coughing frequency and intensity through the course of disease recovery, but with wide variations across patient populations. The methodology creates opportunities to study patterns in biometrics across individuals and among different demographic groups.

摘要

在全球 COVID-19 大流行的背景下,对疾病关键生理参数进行连续监测的能力从未像现在这样重要。柔软、贴肤的电子设备结合了高带宽、小型化的运动传感器,可以实现对核心生命体征(心率、呼吸频率和体温)和探索较少的生物标志物(咳嗽次数)的机械声(MA)特征的数字、无线测量,具有高保真度和对环境噪声的免疫能力。本文总结了一项努力,即将此类 MA 传感器与云数据基础设施以及一组基于数字滤波和卷积神经网络的分析方法相结合,用于监测医院和家庭中 COVID-19 感染者和健康个体。独特之处在于对咳嗽和其他声音事件进行定量测量,这些事件是疾病和传染性的指标。系统成像研究表明,咳嗽、说话和大笑的时间和强度与总液滴产生之间存在相关性,液滴产生是疾病传播概率的近似指标。这些传感器与 COVID-19 患者以及住院和居家环境中的健康对照一起部署,连续记录咳嗽频率和强度以及其他一系列生物特征。结果表明,咳嗽频率和强度在疾病恢复过程中呈下降趋势,但在患者群体中存在广泛差异。该方法为研究个体和不同人群中生物特征的模式创造了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d05/8126790/a726281ab950/pnas.2026610118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验