Suppr超能文献

医学影像中社区驱动的放射人工智能部署现状

Current State of Community-Driven Radiological AI Deployment in Medical Imaging.

作者信息

Gupta Vikash, Erdal Barbaros, Ramirez Carolina, Floca Ralf, Genereaux Bradley, Bryson Sidney, Bridge Christopher, Kleesiek Jens, Nensa Felix, Braren Rickmer, Younis Khaled, Penzkofer Tobias, Bucher Andreas Michael, Qin Ming Melvin, Bae Gigon, Lee Hyeonhoon, Cardoso M Jorge, Ourselin Sebastien, Kerfoot Eric, Choudhury Rahul, White Richard D, Cook Tessa, Bericat David, Lungren Matthew, Haukioja Risto, Shuaib Haris

机构信息

Mayo Clinic, Jacksonville, FL, United States.

University of California, San Francisco, CA, United States.

出版信息

JMIR AI. 2024 Dec 9;3:e55833. doi: 10.2196/55833.

Abstract

Artificial intelligence (AI) has become commonplace in solving routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. AI has been shown to improve efficiency in medical image generation, processing, and interpretation, and various such AI models have been developed across research laboratories worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. The goal of this paper is to give an overview of the intersection of AI and medical imaging landscapes. We also want to inform the readers about the importance of using standards in their radiology workflow and the challenges associated with deploying AI models in the clinical workflow. The main focus of this paper is to examine the existing condition of radiology workflow and identify the challenges hindering the implementation of AI in hospital settings. This report reflects extensive weekly discussions and practical problem-solving expertise accumulated over multiple years by industry experts, imaging informatics professionals, research scientists, and clinicians. To gain a deeper understanding of the requirements for deploying AI models, we introduce a taxonomy of AI use cases, supplemented by real-world instances of AI model integration within hospitals. We will also explain how the need for AI integration in radiology can be addressed using the Medical Open Network for AI (MONAI). MONAI is an open-source consortium for providing reproducible deep learning solutions and integration tools for radiology practice in hospitals.

摘要

人工智能(AI)在解决日常常规任务方面已变得司空见惯。由于医学影像数据量和复杂性呈指数级增长,放射科医生的工作量在稳步增加。事实证明,人工智能可提高医学图像生成、处理和解读的效率,并且全球各地的研究实验室已经开发出了各种此类人工智能模型。然而,其中极少有模型(如果有的话)进入常规临床应用,这种差异反映了人工智能研究与成功的人工智能转化之间的鸿沟。本文的目的是概述人工智能与医学影像领域的交叉点。我们还希望让读者了解在放射学工作流程中使用标准的重要性以及在临床工作流程中部署人工智能模型所面临的挑战。本文的主要重点是审视放射学工作流程的现状,并确定阻碍在医院环境中实施人工智能的挑战。本报告反映了行业专家、影像信息学专业人员、研究科学家和临床医生多年来积累的广泛的每周讨论和实际问题解决专业知识。为了更深入地了解部署人工智能模型的要求,我们引入了人工智能用例分类法,并辅以医院内人工智能模型集成的实际案例。我们还将解释如何使用医学人工智能开放网络(MONAI)来满足放射学中人工智能集成的需求。MONAI是一个开源联盟,为医院的放射学实践提供可重复的深度学习解决方案和集成工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce4f/11667144/6abffc45d5bd/ai_v3i1e55833_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验