Suppr超能文献

利用生物信息学和人工智能技术通过组学数据进行热带疾病识别的机遇、挑战及未来展望。

Opportunities, challenges and future perspectives of using bioinformatics and artificial intelligence techniques on tropical disease identification using omics data.

作者信息

Vidanagamachchi S M, Waidyarathna K M G T R

机构信息

Department of Computer Science, Faculty of Science, University of Ruhuna, Matara, Sri Lanka.

Department of Information Technology, Sri Lanka Institute of Advanced Technological Education, Galle, Sri Lanka.

出版信息

Front Digit Health. 2024 Nov 25;6:1471200. doi: 10.3389/fdgth.2024.1471200. eCollection 2024.

Abstract

Tropical diseases can often be caused by viruses, bacteria, parasites, and fungi. They can be spread over vectors. Analysis of multiple omics data types can be utilized in providing comprehensive insights into biological system functions and disease progression. To this end, bioinformatics tools and diverse AI techniques are pivotal in identifying and understanding tropical diseases through the analysis of omics data. In this article, we provide a thorough review of opportunities, challenges, and future directions of utilizing Bioinformatics tools and AI-assisted models on tropical disease identification using various omics data types. We conducted the review from 2015 to 2024 considering reliable databases of peer-reviewed journals and conference articles. Several keywords were taken for the article searching and around 40 articles were reviewed. According to the review, we observed that utilization of omics data with Bioinformatics tools like BLAST, and Clustal Omega can make significant outcomes in tropical disease identification. Further, the integration of multiple omics data improves biomarker identification, and disease predictions including disease outbreak predictions. Moreover, AI-assisted models can improve the precision, cost-effectiveness, and efficiency of CRISPR-based gene editing, optimizing gRNA design, and supporting advanced genetic correction. Several AI-assisted models including XAI can be used to identify diseases and repurpose therapeutic targets and biomarkers efficiently. Furthermore, recent advancements including Transformer-based models such as BERT and GPT-4, have been mainly applied for sequence analysis and functional genomics. Finally, the most recent GeneViT model, utilizing Vision Transformers, and other AI techniques like Generative Adversarial Networks, Federated Learning, Transfer Learning, Reinforcement Learning, Automated ML and Attention Mechanism have shown significant performance in disease classification using omics data.

摘要

热带疾病通常由病毒、细菌、寄生虫和真菌引起。它们可通过病媒传播。多种组学数据类型的分析可用于全面洞察生物系统功能和疾病进展。为此,生物信息学工具和各种人工智能技术在通过组学数据分析识别和理解热带疾病方面起着关键作用。在本文中,我们全面综述了利用生物信息学工具和人工智能辅助模型,通过各种组学数据类型进行热带疾病识别的机遇、挑战和未来方向。我们在2015年至2024年期间进行了综述,参考了同行评审期刊和会议文章的可靠数据库。文章搜索采用了几个关键词,并对约40篇文章进行了综述。根据综述,我们观察到,将组学数据与BLAST和Clustal Omega等生物信息学工具结合使用,在热带疾病识别方面可取得显著成果。此外,整合多种组学数据可改善生物标志物识别以及疾病预测,包括疾病爆发预测。此外,人工智能辅助模型可提高基于CRISPR的基因编辑的精度、成本效益和效率,优化gRNA设计,并支持先进的基因校正。包括可解释人工智能(XAI)在内的几种人工智能辅助模型可用于有效识别疾病并重新利用治疗靶点和生物标志物。此外,包括基于Transformer的模型(如BERT和GPT - 4)在内的最新进展主要应用于序列分析和功能基因组学。最后,最新的GeneViT模型利用视觉Transformer以及生成对抗网络、联邦学习、迁移学习、强化学习、自动化机器学习和注意力机制等其他人工智能技术,在使用组学数据进行疾病分类方面表现出显著性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a3c/11625773/ce125f6ff565/fdgth-06-1471200-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验