Suppr超能文献

大鼠肝脏、肾脏、大脑和心脏中三碘甲状腺原氨酸从血浆到细胞质以及从细胞质到细胞核的立体特异性转运。

Stereospecific transport of triiodothyronine from plasma to cytosol and from cytosol to nucleus in rat liver, kidney, brain, and heart.

作者信息

Oppenheimer J H, Schwartz H L

出版信息

J Clin Invest. 1985 Jan;75(1):147-54. doi: 10.1172/JCI111667.

Abstract

We have investigated the transport of L- and D-triiodothyronine (T3) from plasma to cellular cytoplasm and from cytoplasm to nucleus by estimating the concentration of free hormone in these compartments in rat liver, kidney, brain, and heart. We assessed the distribution of T3 in various tissues and its metabolism by standard isotopic techniques and measured plasma and cytosolic tissue T3 by radioimmunoassay. In addition, we determined the fraction of radiosensitive T3 associated with the cytosol in individual tissues and estimated the cytosolic volume per gram of tissue. Equilibrium dialysis allowed us to determine the binding power of cytosols and plasma, and in vitro saturation techniques provided values for the affinity (ka) for L- and D-T3 of isolated nuclei in aqueous solution at 37 degrees C. We calculated the free cytosolic hormone from the product of cytosolic T3 and the binding power of cytosol for T3, and the free intranuclear T3 from the ka and previously determined ratio of occupied-to-unoccupied binding sites under steady state conditions in euthyroid animals. Our results showed that the free cytosolic/free plasma concentrations for L-T3 and D-T3, respectively, were: liver 2.8, 21.6; kidney 1.17, 63.3; heart 1.31, 1.58; brain 0.86, 0.24. The free nuclear/free cytosolic ratios for L-T3 and D-T3, respectively, were: liver 58.2, 3.70; kidney 55.9, 1.54; heart 80.6, 24.9; and brain 251, 108.6. Our findings suggest that stereospecific transport occurs both from plasma to cytosol and from cytosol to nucleus. The high gradients from cytosol to nucleus imply that there is an energy-dependent process and appear to account for the differences in the nuclear association constant determined in vivo and in vitro.

摘要

我们通过估算大鼠肝脏、肾脏、大脑和心脏这些区室中游离激素的浓度,研究了L-和D-三碘甲状腺原氨酸(T3)从血浆到细胞质以及从细胞质到细胞核的转运过程。我们采用标准同位素技术评估了T3在各种组织中的分布及其代谢情况,并通过放射免疫分析法测定了血浆和细胞溶质中的组织T3。此外,我们确定了各个组织中与细胞溶质相关的放射性敏感T3的比例,并估算了每克组织的细胞溶质体积。平衡透析使我们能够确定细胞溶质和血浆的结合能力,体外饱和技术提供了在37摄氏度水溶液中分离细胞核对L-和D-T3的亲和力(ka)值。我们根据细胞溶质T3与细胞溶质对T3的结合能力的乘积计算游离细胞溶质激素,并根据ka以及在正常甲状腺动物稳态条件下先前确定的占据与未占据结合位点的比例计算游离核内T3。我们的结果表明,L-T3和D-T3的游离细胞溶质/游离血浆浓度分别为:肝脏2.8、21.6;肾脏1.17、63.3;心脏1.31、1.58;大脑0.86、0.24。L-T3和D-T3的游离核/游离细胞溶质比率分别为:肝脏58.2、3.70;肾脏55.9、1.54;心脏80.6、24.9;大脑251、108.6。我们的研究结果表明,从血浆到细胞溶质以及从细胞溶质到细胞核都存在立体特异性转运。从细胞溶质到细胞核的高梯度意味着存在一个能量依赖过程,这似乎解释了体内和体外测定的核结合常数的差异。

相似文献

引用本文的文献

4
T3 levels and thyroid hormone signaling.T3 水平与甲状腺激素信号转导。
Front Endocrinol (Lausanne). 2022 Oct 27;13:1044691. doi: 10.3389/fendo.2022.1044691. eCollection 2022.
7
Thyroid hormone transporters--functions and clinical implications.甲状腺激素转运蛋白——功能与临床意义。
Nat Rev Endocrinol. 2015 Jul;11(7):406-17. doi: 10.1038/nrendo.2015.66. Epub 2015 May 5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验