Horii Maya, Gould Aidan, Yun Zachary, Ray Jaideep, Safta Cosmin, Zohdi Tarek
Mechanical Engineering Department, University of California, Berkeley, Berkeley, California, United States of America.
Data Sciences and Computing Department, Sandia National Laboratories, Livermore, California, United States of America.
PLoS One. 2024 Dec 10;19(12):e0315429. doi: 10.1371/journal.pone.0315429. eCollection 2024.
Accurate disease spread modeling is crucial for identifying the severity of outbreaks and planning effective mitigation efforts. To be reliable when applied to new outbreaks, model calibration techniques must be robust. However, current methods frequently forgo calibration verification (a stand-alone process evaluating the calibration procedure) and instead use overall model validation (a process comparing calibrated model results to data) to check calibration processes, which may conceal errors in calibration. In this work, we develop a stochastic agent-based disease spread model to act as a testing environment as we test two calibration methods using simulation-based calibration, which is a synthetic data calibration verification method. The first calibration method is a Bayesian inference approach using an empirically-constructed likelihood and Markov chain Monte Carlo (MCMC) sampling, while the second method is a likelihood-free approach using approximate Bayesian computation (ABC). Simulation-based calibration suggests that there are challenges with the empirical likelihood calculation used in the first calibration method in this context. These issues are alleviated in the ABC approach. Despite these challenges, we note that the first calibration method performs well in a synthetic data model validation test similar to those common in disease spread modeling literature. We conclude that stand-alone calibration verification using synthetic data may benefit epidemiological researchers in identifying model calibration challenges that may be difficult to identify with other commonly used model validation techniques.
准确的疾病传播建模对于确定疫情的严重程度和规划有效的缓解措施至关重要。为了在应用于新疫情时可靠,模型校准技术必须稳健。然而,当前方法经常放弃校准验证(一个评估校准程序的独立过程),而是使用整体模型验证(一个将校准后的模型结果与数据进行比较的过程)来检查校准过程,这可能会掩盖校准中的错误。在这项工作中,我们开发了一个基于随机代理的疾病传播模型,作为一个测试环境,在此环境中我们使用基于模拟的校准(一种合成数据校准验证方法)来测试两种校准方法。第一种校准方法是一种贝叶斯推理方法,使用经验构建的似然函数和马尔可夫链蒙特卡罗(MCMC)采样,而第二种方法是一种使用近似贝叶斯计算(ABC)的无似然方法。基于模拟的校准表明,在这种情况下,第一种校准方法中使用的经验似然计算存在挑战。这些问题在ABC方法中得到缓解。尽管存在这些挑战,但我们注意到,在类似于疾病传播建模文献中常见的合成数据模型验证测试中,第一种校准方法表现良好。我们得出结论,使用合成数据进行独立的校准验证可能会使流行病学研究人员受益,有助于识别其他常用模型验证技术可能难以识别的模型校准挑战。