Department of Pharmacy, BGC Trust University Bangladesh, Chattogram, Bangladesh.
Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.
Cardiovasc Ther. 2022 Aug 9;2022:9034996. doi: 10.1155/2022/9034996. eCollection 2022.
Cardiovascular disease (CVD) is the combination of coronary heart disease, myocardial infarction, rheumatic heart disease, and peripheral vascular disease of the heart and blood vessels. It is one of the leading deadly diseases that causes one-third of the deaths yearly in the globe. Additionally, the risk factors associated with it make the situation more complex for cardiovascular patients, which lead them towards mortality, but the genetic association between CVD and its risk factors is not clearly explored in the global literature. We addressed this issue and explored the linkage between CVD and its risk factors.
We developed an analytical approach to reveal the risk factors and their linkages with CVD. We used GEO microarray datasets for the CVD and other risk factors in this study. We performed several analyses including gene expression analysis, diseasome analysis, protein-protein interaction (PPI) analysis, and pathway analysis for discovering the relationship between CVD and its risk factors. We also examined the validation of our study using gold benchmark databases OMIM, dbGAP, and DisGeNET.
We observed that the number of 32, 17, 53, 70, and 89 differentially expressed genes (DEGs) is overlapped between CVD and its risk factors of hypertension (HTN), type 2 diabetes (T2D), hypercholesterolemia (HCL), obesity, and aging, respectively. We identified 10 major hub proteins (FPR2, TNF, CXCL8, CXCL1, IL1B, VEGFA, CYBB, PTGS2, ITGAX, and CCR5), 12 significant functional pathways, and 11 gene ontological pathways that are associated with CVD. We also found the connection of CVD with its risk factors in the gold benchmark databases. Our experimental outcomes indicate a strong association of CVD with its risk factors of HTN, T2D, HCL, obesity, and aging.
Our computational approach explored the genetic association of CVD with its risk factors by identifying the significant DEGs, hub proteins, and signaling and ontological pathways. The outcomes of this study may be further used in the lab-based analysis for developing the effective treatment strategies of CVD.
心血管疾病(CVD)是指冠心病、心肌梗死、风湿性心脏病和外周血管疾病等心脏和血管疾病的组合。它是全球每年导致三分之一死亡的主要致死疾病之一。此外,与心血管疾病相关的风险因素使心血管疾病患者的情况更加复杂,导致他们走向死亡,但 CVD 及其风险因素之间的遗传关联在全球文献中尚未得到明确探讨。我们解决了这个问题,并探讨了 CVD 与其风险因素之间的联系。
我们开发了一种分析方法来揭示风险因素及其与 CVD 的联系。我们在这项研究中使用了 CVD 和其他风险因素的 GEO 微阵列数据集。我们进行了包括基因表达分析、疾病本体分析、蛋白质-蛋白质相互作用(PPI)分析和途径分析在内的多项分析,以发现 CVD 与其风险因素之间的关系。我们还使用 OMIM、dbGAP 和 DisGeNET 等黄金基准数据库来验证我们的研究。
我们观察到,在 CVD 及其高血压(HTN)、2 型糖尿病(T2D)、高胆固醇血症(HCL)、肥胖和衰老风险因素之间,有 32、17、53、70 和 89 个差异表达基因(DEGs)重叠。我们确定了 10 个主要的枢纽蛋白(FPR2、TNF、CXCL8、CXCL1、IL1B、VEGFA、CYBB、PTGS2、ITGAX 和 CCR5)、12 个重要的功能途径和 11 个与 CVD 相关的基因本体途径。我们还在黄金基准数据库中发现了 CVD 与其风险因素的联系。我们的实验结果表明,CVD 与 HTN、T2D、HCL、肥胖和衰老等风险因素之间存在很强的关联。
我们的计算方法通过识别显著的 DEGs、枢纽蛋白以及信号和本体途径,探索了 CVD 与其风险因素的遗传关联。这项研究的结果可能进一步用于实验室分析,以开发 CVD 的有效治疗策略。