Suppr超能文献

YAP/BMP/ID1轴在模拟微重力诱导人脑类器官神经管缺陷中的关键作用

The Critical Role of YAP/BMP/ID1 Axis on Simulated Microgravity-Induced Neural Tube Defects in Human Brain Organoids.

作者信息

Guo Di, Yao Bin, Shao Wen-Wei, Zuo Jia-Chen, Chang Zhe-Han, Shi Jian-Xin, Hu Nan, Bao Shuang-Qing, Chen Meng-Meng, Fan Xiu, Li Xiao-Hong

机构信息

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China.

出版信息

Adv Sci (Weinh). 2025 Feb;12(5):e2410188. doi: 10.1002/advs.202410188. Epub 2024 Dec 10.

Abstract

Integrated biochemical and biophysical signals regulate embryonic development. Correct neural tube formation is critical for the development of central nervous system. However, the role of microgravity in neurodevelopment and its underlying molecular mechanisms remain unclear. In this study, the effects of stimulated microgravity (SMG) on the development of human brain organoids are investigated. SMG impairs N-cadherin-based adherens junction formation, leading to neural tube defects associated with dysregulated self-renewal capacity and neuroepithelial disorganization in human brain organoids. Bulk gene expression analyses reveal that SMG alters Hippo and BMP signaling in brain organoids. The neuropathological deficits in SMG-treated organoids can be rescued by regulating YAP/BMP/ID1 axis. Furthermore, sing-cell RNA sequencing data show that SMG results in perturbations in the number and function of neural stem and progenitor cell subpopulations. One of these subpopulations senses SMG cues and transmits BMP signals to the subpopulation responsible for tube morphogenesis, ultimately affecting the proliferating cell population. Finally, SMG intervention leads to persistent neurologic damage even after returning to normal gravity conditions. Collectively, this study reveals molecular and cellular abnormalities associated with SMG during human brain development, providing opportunities for countermeasures to maintain normal neurodevelopment in space.

摘要

整合的生化和生物物理信号调节胚胎发育。正确的神经管形成对于中枢神经系统的发育至关重要。然而,微重力在神经发育中的作用及其潜在分子机制仍不清楚。在本研究中,研究了模拟微重力(SMG)对人脑类器官发育的影响。SMG损害基于N-钙黏蛋白的黏附连接形成,导致人脑类器官中与自我更新能力失调和神经上皮紊乱相关的神经管缺陷。大量基因表达分析表明,SMG改变了脑类器官中的Hippo和BMP信号通路。通过调节YAP/BMP/ID1轴可以挽救SMG处理的类器官中的神经病理学缺陷。此外,单细胞RNA测序数据表明,SMG导致神经干细胞和祖细胞亚群的数量和功能发生扰动。其中一个亚群感知SMG信号并将BMP信号传递给负责神经管形态发生的亚群,最终影响增殖细胞群。最后,即使在恢复到正常重力条件后,SMG干预仍会导致持续性神经损伤。总的来说,这项研究揭示了人类大脑发育过程中与SMG相关的分子和细胞异常,为在太空中维持正常神经发育的对策提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06d/11792043/1ec44240fd93/ADVS-12-2410188-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验