Suppr超能文献

BPEN:用于可靠脑成像分析的脑后部证据网络。

BPEN: Brain Posterior Evidential Network for trustworthy brain imaging analysis.

作者信息

Ye Kai, Tang Haoteng, Dai Siyuan, Fortel Igor, Thompson Paul M, Mackin R Scott, Leow Alex, Huang Heng, Zhan Liang

机构信息

Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, 15260, PA, USA.

Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, 78539, TX, USA.

出版信息

Neural Netw. 2025 Mar;183:106943. doi: 10.1016/j.neunet.2024.106943. Epub 2024 Nov 26.

Abstract

The application of deep learning techniques to analyze brain functional magnetic resonance imaging (fMRI) data has led to significant advancements in identifying prospective biomarkers associated with various clinical phenotypes and neurological conditions. Despite these achievements, the aspect of prediction uncertainty has been relatively underexplored in brain fMRI data analysis. Accurate uncertainty estimation is essential for trustworthy learning, given the challenges associated with brain fMRI data acquisition and the potential diagnostic implications for patients. To address this gap, we introduce a novel posterior evidential network, named the Brain Posterior Evidential Network (BPEN), designed to capture both aleatoric and epistemic uncertainty in the analysis of brain fMRI data. We conducted comprehensive experiments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and ADNI-depression (ADNI-D) cohorts, focusing on predictions for mild cognitive impairment (MCI) and depression across various diagnostic groups. Our experiments not only unequivocally demonstrate the superior predictive performance of our BPEN model compared to existing state-of-the-art methods but also underscore the importance of uncertainty estimation in predictive models.

摘要

将深度学习技术应用于分析脑功能磁共振成像(fMRI)数据,已在识别与各种临床表型和神经疾病相关的潜在生物标志物方面取得了重大进展。尽管取得了这些成就,但在脑fMRI数据分析中,预测不确定性方面的研究相对较少。鉴于脑fMRI数据采集存在的挑战以及对患者潜在的诊断意义,准确的不确定性估计对于可靠的学习至关重要。为了填补这一空白,我们引入了一种新颖的后验证据网络,称为脑后验证据网络(BPEN),旨在在脑fMRI数据分析中同时捕获偶然不确定性和认知不确定性。我们使用来自阿尔茨海默病神经成像计划(ADNI)和ADNI-抑郁症(ADNI-D)队列的数据进行了全面实验,重点是对各个诊断组的轻度认知障碍(MCI)和抑郁症进行预测。我们的实验不仅明确证明了我们的BPEN模型与现有最先进方法相比具有卓越的预测性能,还强调了不确定性估计在预测模型中的重要性。

相似文献

本文引用的文献

1
A comprehensive survey of complex brain network representation.复杂脑网络表征的全面综述。
Meta Radiol. 2023 Nov;1(3). doi: 10.1016/j.metrad.2023.100046. Epub 2023 Dec 16.
2
Bidirectional Mapping with Contrastive Learning on Multimodal Neuroimaging Data.多模态神经影像数据上基于对比学习的双向映射
Med Image Comput Comput Assist Interv. 2023 Oct;14222:138-148. doi: 10.1007/978-3-031-43898-1_14. Epub 2023 Oct 1.
5
Tackling prediction uncertainty in machine learning for healthcare.解决医疗保健机器学习中的预测不确定性。
Nat Biomed Eng. 2023 Jun;7(6):711-718. doi: 10.1038/s41551-022-00988-x. Epub 2022 Dec 29.
7
Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model.基于分层符号图池化模型的对比脑网络学习。
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7363-7375. doi: 10.1109/TNNLS.2022.3220220. Epub 2024 Jun 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验