Suppr超能文献

多模态神经影像数据上基于对比学习的双向映射

Bidirectional Mapping with Contrastive Learning on Multimodal Neuroimaging Data.

作者信息

Ye Kai, Tang Haoteng, Dai Siyuan, Guo Lei, Liu Johnny Yuehan, Wang Yalin, Leow Alex, Thompson Paul M, Huang Heng, Zhan Liang

机构信息

University of Pittsburgh, Pittsburgh, PA 15260, USA.

University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.

出版信息

Med Image Comput Comput Assist Interv. 2023 Oct;14222:138-148. doi: 10.1007/978-3-031-43898-1_14. Epub 2023 Oct 1.

Abstract

The modeling of the interaction between brain structure and function using deep learning techniques has yielded remarkable success in identifying potential biomarkers for different clinical phenotypes and brain diseases. However, most existing studies focus on one-way mapping, either projecting brain function to brain structure or inversely. This type of unidirectional mapping approach is limited by the fact that it treats the mapping as a one-way task and neglects the intrinsic unity between these two modalities. Moreover, when dealing with the same biological brain, mapping from structure to function and from function to structure yields dissimilar outcomes, highlighting the likelihood of bias in one-way mapping. To address this issue, we propose a novel bidirectional mapping model, named Bidirectional Mapping with Contrastive Learning (BMCL), to reduce the bias between these two unidirectional mappings via ROI-level contrastive learning. We evaluate our framework on clinical phenotype and neurodegenerative disease predictions using two publicly available datasets (HCP and OASIS). Our results demonstrate the superiority of BMCL compared to several state-of-the-art methods.

摘要

利用深度学习技术对脑结构与功能之间的相互作用进行建模,在识别不同临床表型和脑部疾病的潜在生物标志物方面取得了显著成功。然而,大多数现有研究集中在单向映射上,要么将脑功能投射到脑结构,要么反之。这种单向映射方法受到其将映射视为单向任务并忽略这两种模态之间内在统一性的限制。此外,在处理同一个生物大脑时,从结构到功能以及从功能到结构的映射会产生不同的结果,这凸显了单向映射中存在偏差的可能性。为了解决这个问题,我们提出了一种新颖的双向映射模型,名为对比学习双向映射(BMCL),通过感兴趣区域(ROI)级别的对比学习来减少这两种单向映射之间的偏差。我们使用两个公开可用的数据集(人类连接组计划(HCP)和老年人脑成像数据集(OASIS))对我们的框架进行临床表型和神经退行性疾病预测评估。我们的结果证明了BMCL相对于几种最先进方法的优越性。

相似文献

1
Bidirectional Mapping with Contrastive Learning on Multimodal Neuroimaging Data.多模态神经影像数据上基于对比学习的双向映射
Med Image Comput Comput Assist Interv. 2023 Oct;14222:138-148. doi: 10.1007/978-3-031-43898-1_14. Epub 2023 Oct 1.
3
Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model.基于分层符号图池化模型的对比脑网络学习。
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7363-7375. doi: 10.1109/TNNLS.2022.3220220. Epub 2024 Jun 4.
9
Unsupervised low-dose CT denoising using bidirectional contrastive network.基于双向对比网络的无监督低剂量 CT 去噪。
Comput Methods Programs Biomed. 2024 Jun;251:108206. doi: 10.1016/j.cmpb.2024.108206. Epub 2024 May 3.
10
Semantics-Guided Contrastive Network for Zero-Shot Object Detection.用于零样本目标检测的语义引导对比网络
IEEE Trans Pattern Anal Mach Intell. 2024 Mar;46(3):1530-1544. doi: 10.1109/TPAMI.2021.3140070. Epub 2024 Feb 6.

本文引用的文献

2
HIERARCHICAL BRAIN EMBEDDING USING EXPLAINABLE GRAPH LEARNING.使用可解释图学习的分层脑嵌入
Proc IEEE Int Symp Biomed Imaging. 2022 Mar;2022. doi: 10.1109/isbi52829.2022.9761543. Epub 2022 Apr 26.
4
Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model.基于分层符号图池化模型的对比脑网络学习。
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7363-7375. doi: 10.1109/TNNLS.2022.3220220. Epub 2024 Jun 4.
5
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks.脑图基准:基于图神经网络的脑网络分析基准
IEEE Trans Med Imaging. 2023 Feb;42(2):493-506. doi: 10.1109/TMI.2022.3218745. Epub 2023 Feb 2.
7
Predicting brain structural network using functional connectivity.利用功能连接预测脑结构网络。
Med Image Anal. 2022 Jul;79:102463. doi: 10.1016/j.media.2022.102463. Epub 2022 Apr 22.
9
Deep Representation Learning For Multimodal Brain Networks.用于多模态脑网络的深度表征学习
Med Image Comput Comput Assist Interv. 2020;12267:613-624. doi: 10.1007/978-3-030-59728-3_60. Epub 2020 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验