Ye Kai, Tang Haoteng, Dai Siyuan, Guo Lei, Liu Johnny Yuehan, Wang Yalin, Leow Alex, Thompson Paul M, Huang Heng, Zhan Liang
University of Pittsburgh, Pittsburgh, PA 15260, USA.
University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
Med Image Comput Comput Assist Interv. 2023 Oct;14222:138-148. doi: 10.1007/978-3-031-43898-1_14. Epub 2023 Oct 1.
The modeling of the interaction between brain structure and function using deep learning techniques has yielded remarkable success in identifying potential biomarkers for different clinical phenotypes and brain diseases. However, most existing studies focus on one-way mapping, either projecting brain function to brain structure or inversely. This type of unidirectional mapping approach is limited by the fact that it treats the mapping as a one-way task and neglects the intrinsic unity between these two modalities. Moreover, when dealing with the same biological brain, mapping from structure to function and from function to structure yields dissimilar outcomes, highlighting the likelihood of bias in one-way mapping. To address this issue, we propose a novel bidirectional mapping model, named Bidirectional Mapping with Contrastive Learning (BMCL), to reduce the bias between these two unidirectional mappings via ROI-level contrastive learning. We evaluate our framework on clinical phenotype and neurodegenerative disease predictions using two publicly available datasets (HCP and OASIS). Our results demonstrate the superiority of BMCL compared to several state-of-the-art methods.
利用深度学习技术对脑结构与功能之间的相互作用进行建模,在识别不同临床表型和脑部疾病的潜在生物标志物方面取得了显著成功。然而,大多数现有研究集中在单向映射上,要么将脑功能投射到脑结构,要么反之。这种单向映射方法受到其将映射视为单向任务并忽略这两种模态之间内在统一性的限制。此外,在处理同一个生物大脑时,从结构到功能以及从功能到结构的映射会产生不同的结果,这凸显了单向映射中存在偏差的可能性。为了解决这个问题,我们提出了一种新颖的双向映射模型,名为对比学习双向映射(BMCL),通过感兴趣区域(ROI)级别的对比学习来减少这两种单向映射之间的偏差。我们使用两个公开可用的数据集(人类连接组计划(HCP)和老年人脑成像数据集(OASIS))对我们的框架进行临床表型和神经退行性疾病预测评估。我们的结果证明了BMCL相对于几种最先进方法的优越性。