Nguyen Dinh Cong, Nguyen Hoang Long
Hong Duc University, 565 Quang Trung, Dong Ve Ward, Thanh Hoa, 40000, Thanh Hoa, Viet Nam.
J Imaging Inform Med. 2025 Aug;38(4):2194-2209. doi: 10.1007/s10278-024-01342-0. Epub 2024 Dec 10.
This study introduces ColonNeXt, a novel fully convolutional attention-based model for polyp segmentation from colonoscopy images, aimed at the enhancing early detection of colorectal cancer. Utilizing a purely convolutional neural network (CNN), ColonNeXt integrates an encoder-decoder structure with a hierarchical multi-scale context-aware network (MSCAN) in the encoder and a convolutional block attention module (CBAM) in the decoder. The decoder further includes a proposed CNN-based feature attention mechanism for selective feature enhancement, ensuring precise segmentation. A new refinement module effectively improves boundary accuracy, addressing challenges such as variable polyp size, complex textures, and inconsistent illumination. Evaluations on standard datasets show that ColonNeXt achieves high accuracy and efficiency, significantly outperforming competing methods. These results confirm its robustness and precision, establishing ColonNeXt as a state-of-the-art model for polyp segmentation. The code is available at: https://github.com/long-nguyen12/colonnext-pytorch .
本研究介绍了ColonNeXt,这是一种用于从结肠镜图像中进行息肉分割的新型全卷积注意力模型,旨在加强结直肠癌的早期检测。ColonNeXt利用纯卷积神经网络(CNN),在编码器中集成了编码器-解码器结构与分层多尺度上下文感知网络(MSCAN),并在解码器中集成了卷积块注意力模块(CBAM)。解码器还包括一个基于CNN的特征注意力机制,用于选择性特征增强,以确保精确分割。一个新的细化模块有效提高了边界精度,解决了诸如息肉大小可变、纹理复杂和光照不一致等挑战。在标准数据集上的评估表明,ColonNeXt实现了高精度和高效率,显著优于竞争方法。这些结果证实了其稳健性和精确性,使ColonNeXt成为息肉分割的先进模型。代码可在以下网址获取:https://github.com/long-nguyen12/colonnext-pytorch 。