Suppr超能文献

结肠Next:用于息肉分割的全卷积注意力模型

ColonNeXt: Fully Convolutional Attention for Polyp Segmentation.

作者信息

Nguyen Dinh Cong, Nguyen Hoang Long

机构信息

Hong Duc University, 565 Quang Trung, Dong Ve Ward, Thanh Hoa, 40000, Thanh Hoa, Viet Nam.

出版信息

J Imaging Inform Med. 2025 Aug;38(4):2194-2209. doi: 10.1007/s10278-024-01342-0. Epub 2024 Dec 10.

Abstract

This study introduces ColonNeXt, a novel fully convolutional attention-based model for polyp segmentation from colonoscopy images, aimed at the enhancing early detection of colorectal cancer. Utilizing a purely convolutional neural network (CNN), ColonNeXt integrates an encoder-decoder structure with a hierarchical multi-scale context-aware network (MSCAN) in the encoder and a convolutional block attention module (CBAM) in the decoder. The decoder further includes a proposed CNN-based feature attention mechanism for selective feature enhancement, ensuring precise segmentation. A new refinement module effectively improves boundary accuracy, addressing challenges such as variable polyp size, complex textures, and inconsistent illumination. Evaluations on standard datasets show that ColonNeXt achieves high accuracy and efficiency, significantly outperforming competing methods. These results confirm its robustness and precision, establishing ColonNeXt as a state-of-the-art model for polyp segmentation. The code is available at: https://github.com/long-nguyen12/colonnext-pytorch .

摘要

本研究介绍了ColonNeXt,这是一种用于从结肠镜图像中进行息肉分割的新型全卷积注意力模型,旨在加强结直肠癌的早期检测。ColonNeXt利用纯卷积神经网络(CNN),在编码器中集成了编码器-解码器结构与分层多尺度上下文感知网络(MSCAN),并在解码器中集成了卷积块注意力模块(CBAM)。解码器还包括一个基于CNN的特征注意力机制,用于选择性特征增强,以确保精确分割。一个新的细化模块有效提高了边界精度,解决了诸如息肉大小可变、纹理复杂和光照不一致等挑战。在标准数据集上的评估表明,ColonNeXt实现了高精度和高效率,显著优于竞争方法。这些结果证实了其稳健性和精确性,使ColonNeXt成为息肉分割的先进模型。代码可在以下网址获取:https://github.com/long-nguyen12/colonnext-pytorch

相似文献

1
ColonNeXt: Fully Convolutional Attention for Polyp Segmentation.结肠Next:用于息肉分割的全卷积注意力模型
J Imaging Inform Med. 2025 Aug;38(4):2194-2209. doi: 10.1007/s10278-024-01342-0. Epub 2024 Dec 10.

本文引用的文献

1
Using DUCK-Net for polyp image segmentation.使用 DUCK-Net 进行息肉图像分割。
Sci Rep. 2023 Jun 16;13(1):9803. doi: 10.1038/s41598-023-36940-5.
4
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
6
A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images.用于结肠镜图像内腔场景分割的基准
J Healthc Eng. 2017;2017:4037190. doi: 10.1155/2017/4037190. Epub 2017 Jul 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验