Zhang Zhenghe, Liu Pengbo, Lu Wanli, Bai Ping, Zhang Bingchang, Chen Zefeng, Maier Stefan A, Gómez Rivas Jaime, Wang Shaojun, Li Xiaofeng
School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.
Fundam Res. 2022 Jun 11;3(5):822-830. doi: 10.1016/j.fmre.2022.05.020. eCollection 2023 Sep.
Dielectric optical antennas have emerged as a promising nanophotonic architecture for manipulating the propagation and localization of light. However, the optically induced Mie resonances in an isolated nanoantenna are normally with broad spectra and poor -factors, limiting their performances in sensing, lasing, and nonlinear optics. Here, we dramatically enhance the -factors of Mie resonances in silicon (Si) nanoparticles across the optical band by arranging the nanoparticles in a periodic lattice. We select monocrystalline Si with negligible material losses and develop a unique method to fabricate nanoparticle arrays on a quartz substrate. By extinction dispersion measurements and electromagnetic analysis, we can identify three types of collective Mie resonances with -factors 500 in the same nanocylinder arrays, including surface lattice resonances, bound states in the continuum, and quasi-guided modes. Our work paves the way for fundamental research in strong light-matter interactions and the design of highly efficient light-emitting metasurfaces.
介电光学天线已成为一种很有前景的用于操纵光的传播和局域化的纳米光子结构。然而,孤立纳米天线中的光学诱导米氏共振通常具有宽光谱和低品质因数,限制了它们在传感、激光和非线性光学方面的性能。在这里,我们通过将纳米颗粒排列成周期性晶格,显著提高了整个光学波段硅(Si)纳米颗粒中米氏共振的品质因数。我们选择材料损耗可忽略不计的单晶硅,并开发了一种在石英衬底上制造纳米颗粒阵列的独特方法。通过消光色散测量和电磁分析,我们可以在同一纳米圆柱阵列中识别出品质因数高达500的三种集体米氏共振,包括表面晶格共振、连续统中的束缚态和准导模。我们的工作为强光与物质相互作用的基础研究以及高效发光超表面的设计铺平了道路。