Suppr超能文献

利用节律性功率变化和相位差异诊断阿尔茨海默病:一项低密度脑电图研究。

Alzheimer's disease diagnosis using rhythmic power changes and phase differences: a low-density EEG study.

作者信息

Wang Juan, Zhao Jiamei, Chen Xiaoling, Yin Bowen, Li Xiaoli, Xie Ping

机构信息

Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China.

Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, China.

出版信息

Front Aging Neurosci. 2025 Jan 17;16:1485132. doi: 10.3389/fnagi.2024.1485132. eCollection 2024.

Abstract

OBJECTIVES

The future emergence of disease-modifying treatments for dementia highlights the urgent need to identify reliable and easily accessible tools for diagnosing Alzheimer's disease (AD). Electroencephalography (EEG) is a non-invasive and cost-effective technique commonly used in the study of neurodegenerative disorders. However, the specific alterations in EEG biomarkers associated with AD remain unclear when using a limited number of electrodes.

METHODS

We studied pathological characteristics of AD using low-density EEG data collected from 26 AD and 29 healthy controls (HC) during both eye closed (EC) and eye opened (EO) resting conditions. The analysis including power spectrum, phase lock value (PLV), and weighted lag phase index (wPLI) and power-to-power frequency coupling (theta/beta) analysis were applied to extract features in the delta, theta, alpha, and beta bands.

RESULTS

During the EC condition, the AD group exhibited decreased alpha power compared to HC. Additionally, both analysis of PLV and wPLI in the theta band indicated that the alterations in the AD brain network predominantly involved in the frontal region with the opposite changes. Moreover, the AD group had increased frequency coupling in the frontal and central regions. Surprisingly, no group difference was found in the EO condition. Notably, decreased theta band functional connectivity within the fronto-central lobe and increased frequency coupling in frontal region were found in AD group from EC to EO. More importantly, the combination of EC and EO quantitative EEG features improved the inter-group classification accuracy when using support vector machine (SVM) in older adults with AD. These findings highlight the complementary nature of EC and EO conditions in assessing and differentiating AD cohorts.

CONCLUSION

Our results underscore the potential of utilizing low-density EEG data from resting-state paradigms, combined with machine learning techniques, to improve the identification and classification of AD.

摘要

目的

未来用于治疗痴呆症的疾病修饰疗法的出现凸显了迫切需要找到可靠且易于获取的工具来诊断阿尔茨海默病(AD)。脑电图(EEG)是一种常用于神经退行性疾病研究的非侵入性且经济高效的技术。然而,使用有限数量电极时,与AD相关的EEG生物标志物的具体变化仍不清楚。

方法

我们使用从26名AD患者和29名健康对照(HC)在闭眼(EC)和睁眼(EO)静息状态下收集的低密度EEG数据研究AD的病理特征。分析包括功率谱、锁相值(PLV)、加权滞后相位指数(wPLI)以及功率对功率频率耦合(theta/beta)分析,以提取δ、θ、α和β频段的特征。

结果

在EC状态下,与HC相比,AD组的α功率降低。此外,θ频段的PLV和wPLI分析均表明,AD脑网络的变化主要涉及额叶区域,且变化相反。此外,AD组在额叶和中央区域的频率耦合增加。令人惊讶的是,在EO状态下未发现组间差异。值得注意的是,从EC到EO,AD组额中央叶内θ频段功能连接性降低,额叶区域频率耦合增加。更重要的是,当在患有AD的老年人中使用支持向量机(SVM)时,EC和EO定量EEG特征的组合提高了组间分类准确性。这些发现突出了EC和EO状态在评估和区分AD队列中的互补性。

结论

我们的结果强调了利用静息态范式的低密度EEG数据并结合机器学习技术来改善AD识别和分类的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec3c/11782140/2ffe5e13b63f/fnagi-16-1485132-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验