Suppr超能文献

用于结肠镜检查期间实时检测大肠息肉的人工智能算法:综述

Artificial intelligence algorithms for real-time detection of colorectal polyps during colonoscopy: a review.

作者信息

Nie Meng-Yuan, An Xin-Wei, Xing Yun-Can, Wang Zheng, Wang Yan-Qiu, Lü Jia-Qi

机构信息

Center for Advanced Laser Technology, Hebei University of Technology Tianjin, China.

Hebei Key Laboratory of Advanced Laser Technology and Equipment Tianjin, China.

出版信息

Am J Cancer Res. 2024 Nov 15;14(11):5456-5470. doi: 10.62347/BZIZ6358. eCollection 2024.

Abstract

Colorectal cancer (CRC) is one of the most common cancers worldwide. Early detection and removal of colorectal polyps during colonoscopy are crucial for preventing such cancers. With the development of artificial intelligence (AI) technology, it has become possible to detect and localize colorectal polyps in real time during colonoscopy using computer-aided diagnosis (CAD). This provides a reliable endoscopist reference and leads to more accurate diagnosis and treatment. This paper reviews AI-based algorithms for real-time detection of colorectal polyps, with a particular focus on the development of deep learning algorithms aimed at optimizing both efficiency and correctness. Furthermore, the challenges and prospects of AI-based colorectal polyp detection are discussed.

摘要

结直肠癌(CRC)是全球最常见的癌症之一。在结肠镜检查期间早期发现并切除大肠息肉对于预防此类癌症至关重要。随着人工智能(AI)技术的发展,利用计算机辅助诊断(CAD)在结肠镜检查期间实时检测和定位大肠息肉已成为可能。这为内镜医师提供了可靠的参考,并有助于实现更准确的诊断和治疗。本文综述了基于人工智能的大肠息肉实时检测算法,特别关注旨在优化效率和准确性的深度学习算法的发展。此外,还讨论了基于人工智能的大肠息肉检测所面临的挑战和前景。

相似文献

1
Artificial intelligence algorithms for real-time detection of colorectal polyps during colonoscopy: a review.
Am J Cancer Res. 2024 Nov 15;14(11):5456-5470. doi: 10.62347/BZIZ6358. eCollection 2024.
3
Challenges Facing the Detection of Colonic Polyps: What Can Deep Learning Do?
Medicina (Kaunas). 2019 Aug 12;55(8):473. doi: 10.3390/medicina55080473.
4
[Application of artificial intelligence for detection and classification of colon polyps].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Feb 25;41(2):310-313. doi: 10.12122/j.issn.1673-4254.2021.02.22.
9
Is artificial intelligence the final answer to missed polyps in colonoscopy?
World J Gastroenterol. 2020 Sep 21;26(35):5248-5255. doi: 10.3748/wjg.v26.i35.5248.
10
An efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasets.
Comput Biol Med. 2022 Feb;141:105031. doi: 10.1016/j.compbiomed.2021.105031. Epub 2021 Nov 13.

本文引用的文献

1
LightCF-Net: A Lightweight Long-Range Context Fusion Network for Real-Time Polyp Segmentation.
Bioengineering (Basel). 2024 May 27;11(6):545. doi: 10.3390/bioengineering11060545.
3
Development and validation of a three-dimensional deep learning-based system for assessing bowel preparation on colonoscopy video.
Front Med (Lausanne). 2023 Dec 18;10:1296249. doi: 10.3389/fmed.2023.1296249. eCollection 2023.
4
Real-Time Computer-Aided Detection of Colorectal Neoplasia During Colonoscopy : A Systematic Review and Meta-analysis.
Ann Intern Med. 2023 Sep;176(9):1209-1220. doi: 10.7326/M22-3678. Epub 2023 Aug 29.
5
Deep Learning for Medical Image-Based Cancer Diagnosis.
Cancers (Basel). 2023 Jul 13;15(14):3608. doi: 10.3390/cancers15143608.
9
Polyp detection on video colonoscopy using a hybrid 2D/3D CNN.
Med Image Anal. 2022 Nov;82:102625. doi: 10.1016/j.media.2022.102625. Epub 2022 Sep 23.
10
An Ensemble-Based Deep Convolutional Neural Network for Computer-Aided Polyps Identification From Colonoscopy.
Front Genet. 2022 Apr 26;13:844391. doi: 10.3389/fgene.2022.844391. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验