Department of pathology, Radboud University Medical Center, Nijmegen, The Netherlands.
Pathology Unit Gravina Hospital, Gravina Hospital, Caltagirone, Italy.
Sci Rep. 2023 May 24;13(1):8398. doi: 10.1038/s41598-023-35491-z.
In colorectal cancer (CRC), artificial intelligence (AI) can alleviate the laborious task of characterization and reporting on resected biopsies, including polyps, the numbers of which are increasing as a result of CRC population screening programs ongoing in many countries all around the globe. Here, we present an approach to address two major challenges in the automated assessment of CRC histopathology whole-slide images. We present an AI-based method to segment multiple ([Formula: see text]) tissue compartments in the H &E-stained whole-slide image, which provides a different, more perceptible picture of tissue morphology and composition. We test and compare a panel of state-of-the-art loss functions available for segmentation models, and provide indications about their use in histopathology image segmentation, based on the analysis of (a) a multi-centric cohort of CRC cases from five medical centers in the Netherlands and Germany, and (b) two publicly available datasets on segmentation in CRC. We used the best performing AI model as the basis for a computer-aided diagnosis system that classifies colon biopsies into four main categories that are relevant pathologically. We report the performance of this system on an independent cohort of more than 1000 patients. The results show that with a good segmentation network as a base, a tool can be developed which can support pathologists in the risk stratification of colorectal cancer patients, among other possible uses. We have made the segmentation model available for research use on https://grand-challenge.org/algorithms/colon-tissue-segmentation/ .
在结直肠癌 (CRC) 中,人工智能 (AI) 可以减轻对切除活检的特征描述和报告的繁重任务,包括息肉,由于全球许多国家正在进行 CRC 人群筛查计划,息肉数量正在增加。在这里,我们提出了一种方法来解决 CRC 组织病理学全切片图像自动评估中的两个主要挑战。我们提出了一种基于人工智能的方法来分割 H&E 染色全切片图像中的多个([Formula: see text])组织区室,这提供了组织形态和组成的不同、更易感知的图片。我们测试和比较了适用于分割模型的一系列最先进的损失函数,并根据对(a)来自荷兰和德国五个医疗中心的 CRC 病例的多中心队列的分析,以及(b)CRC 中分割的两个公开可用数据集,提供了关于它们在组织病理学图像分割中的使用的指示。我们使用表现最佳的人工智能模型作为计算机辅助诊断系统的基础,该系统将结肠活检分为四个与病理学相关的主要类别。我们报告了该系统在超过 1000 名患者的独立队列上的性能。结果表明,有了一个良好的分割网络作为基础,可以开发一种工具来支持病理学家对结直肠癌患者进行风险分层,以及其他可能的用途。我们已经在 https://grand-challenge.org/algorithms/colon-tissue-segmentation/ 上提供了分割模型供研究使用。