Suppr超能文献

不同的影像组学模型在预测小肠间质瘤恶性潜能中的应用

Different radiomics models in predicting the malignant potential of small intestinal stromal tumors.

作者信息

Xie Yuxin, Duan Chongfeng, Zhou Xuzhe, Zhou Xiaoming, Shao Qiulin, Wang Xin, Zhang Shuai, Liu Fang, Sun Zhenbo, Zhao Ruirui, Wang Gang

机构信息

Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

University of western Ontario, 1151 Richmond Street, London, Ontario N6A3K7, Canada.

出版信息

Eur J Radiol Open. 2024 Nov 25;13:100615. doi: 10.1016/j.ejro.2024.100615. eCollection 2024 Dec.

Abstract

OBJECTIVES

To explore the feasibility of different radiomics models for predicting the malignant potential of small intestinal stromal tumors (SISTs), and to select the best radiomics model.

METHODS

A retrospective analysis of 140 patients with SISTs was conducted. Radiomics features were extracted from CT-enhanced images. Support vector machine (SVM), Decision tree (DT), Conditional inference trees (CIT), Random Forest (RF), K-nearest neighbors (KNN), Back-propagation neural network (BPNet), and Bayes were used to construct different radiomics models. The clinical data and CT performance were selected using univariate analysis and to construct clinical model. Nomogram model was developed by combining clinical data and radiomics features. Model performances were assessed by using the area under the receiver operator characteristic (ROC) curve (AUC). The models' clinical values were assessed by decision curve analysis (DCA).

RESULTS

A total of 1132 radiomics features were extracted. Among radiomics models, SVM was better than DT, CIT, RF, KNN, BPNet, Bayes because it had the highest AUC with a significant difference (P<0.05). The AUC of the clinical model was 0.781. The AUC of the radiomics model was 0.910. The AUC of nomogram model was 0.938. Clinical models had the lowest AUC. Nomogram AUC were slightly higher than radiomics model, but the difference was not significant (P=0.48). The DCA of the nomogram model and radiomics model showed optimal clinical efficacy.

CONCLUSIONS

The model constructed with SVM method was the best model for predicting the malignant potential of SISTs. Radiomics model and nomogram model showed high predictive value in predicting the malignant potential of SISTs.

摘要

目的

探讨不同的放射组学模型预测小肠间质瘤(SISTs)恶性潜能的可行性,并选择最佳的放射组学模型。

方法

对140例SISTs患者进行回顾性分析。从CT增强图像中提取放射组学特征。使用支持向量机(SVM)、决策树(DT)、条件推断树(CIT)、随机森林(RF)、K近邻(KNN)、反向传播神经网络(BPNet)和贝叶斯方法构建不同的放射组学模型。采用单因素分析选择临床数据和CT表现以构建临床模型。通过结合临床数据和放射组学特征建立列线图模型。使用受试者操作特征(ROC)曲线下面积(AUC)评估模型性能。通过决策曲线分析(DCA)评估模型的临床价值。

结果

共提取1132个放射组学特征。在放射组学模型中,SVM优于DT、CIT、RF、KNN、BPNet、贝叶斯,因为其AUC最高,差异有统计学意义(P<0.05)。临床模型的AUC为0.781。放射组学模型的AUC为0.910。列线图模型的AUC为0.938。临床模型的AUC最低。列线图AUC略高于放射组学模型,但差异无统计学意义(P=0.48)。列线图模型和放射组学模型的DCA显示出最佳临床疗效。

结论

采用SVM方法构建的模型是预测SISTs恶性潜能的最佳模型。放射组学模型和列线图模型在预测SISTs恶性潜能方面显示出较高的预测价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e45a/11629208/aaba7910a2c5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验