State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, 4102, Australia.
ISME J. 2022 Oct;16(10):2373-2387. doi: 10.1038/s41396-022-01281-0. Epub 2022 Jul 9.
Methane produced by methanogenic archaea has an important influence on Earth's changing climate. Methanogenic archaea are phylogenetically diverse and widespread in anoxic environments. These microorganisms can be divided into two subgroups based on whether or not they use b-type cytochromes for energy conservation. Methanogens with b-type cytochromes have a wider substrate range and higher growth yields than those without them. To date, methanogens with b-type cytochromes were found exclusively in the phylum "Ca. Halobacteriota" (formerly part of the phylum Euryarchaeota). Here, we present the discovery of metagenome-assembled genomes harboring methyl-coenzyme M reductase genes reconstructed from mesophilic anoxic sediments, together with the previously reported thermophilic "Ca. Methylarchaeum tengchongensis", representing a novel archaeal order, designated the "Ca. Methylarchaeales", of the phylum Thermoproteota (formerly the TACK superphylum). These microorganisms contain genes required for methyl-reducing methanogenesis and the Wood-Ljundahl pathway. Importantly, the genus "Ca. Methanotowutia" of the "Ca. Methylarchaeales" encode a cytochrome b-containing heterodisulfide reductase (HdrDE) and methanophenazine-reducing hydrogenase complex that have similar gene arrangements to those found in methanogenic Methanosarcinales. Our results indicate that members of the "Ca. Methylarchaeales" are methanogens with cytochromes and can conserve energy via membrane-bound electron transport chains. Phylogenetic and amalgamated likelihood estimation analyses indicate that methanogens with cytochrome b-containing electron transfer complexes likely evolved before diversification of Thermoproteota or "Ca. Halobacteriota" in the early Archean Eon. Surveys of public sequence databases suggest that members of the lineage are globally distributed in anoxic sediments and may be important players in the methane cycle.
产甲烷古菌产生的甲烷对地球气候变化有重要影响。产甲烷古菌在系统发育上具有多样性,广泛存在于缺氧环境中。这些微生物可以根据它们是否使用 b 型细胞色素来进行能量保存而分为两个亚群。具有 b 型细胞色素的产甲烷菌比没有 b 型细胞色素的产甲烷菌具有更广泛的底物范围和更高的生长产量。迄今为止,具有 b 型细胞色素的产甲烷菌仅在“Ca. Halobacteriota”门(以前是广古菌门的一部分)中被发现。在这里,我们介绍了从嗜温和缺氧沉积物中重建的含有甲基辅酶 M 还原酶基因的宏基因组组装基因组的发现,以及以前报道的嗜热“Ca. Methylarchaeum tengchongensis”,代表了一个新的古菌目,命名为“Ca. Methylarchaeales”,属于热变形菌门(以前是 TACK 超门)。这些微生物含有进行甲基还原产甲烷作用和伍德-吕达尔途径所需的基因。重要的是,“Ca. Methylarchaeales”中的“Ca. Methanotowutia”属编码含有细胞色素 b 的异二硫键还原酶(HdrDE)和甲烷酚嗪还原氢化酶复合物,其基因排列与产甲烷甲烷杆菌目中发现的相似。我们的结果表明,“Ca. Methylarchaeales”的成员是具有细胞色素的产甲烷菌,可以通过膜结合的电子传递链来保存能量。系统发育和合并似然估计分析表明,含有细胞色素 b 的电子传递复合物的产甲烷菌可能在热变形菌门或早期太古代“Ca. Halobacteriota”多样化之前就已经进化了。对公共序列数据库的调查表明,该谱系的成员在全球范围内分布在缺氧沉积物中,并且可能是甲烷循环中的重要参与者。