Suppr超能文献

基于人工智能的内镜形态化学成像与飞秒激光消融用于选择性肿瘤识别和选择性组织切除。

Endomicroscopic AI-driven morphochemical imaging and fs-laser ablation for selective tumor identification and selective tissue removal.

作者信息

Calvarese Matteo, Corbetta Elena, Contreras Jhonatan, Bae Hyeonsoo, Lai Chenting, Reichwald Karl, Meyer-Zedler Tobias, Pertzborn David, Mühlig Anna, Hoffmann Franziska, Messerschmidt Bernhard, Guntinas-Lichius Orlando, Schmitt Michael, Bocklitz Thomas, Popp Juergen

机构信息

Leibniz-Institute of Photonic Technology (IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Albert-Einstein-Str. 9, 07745 Jena, Germany.

Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany.

出版信息

Sci Adv. 2024 Dec 13;10(50):eado9721. doi: 10.1126/sciadv.ado9721. Epub 2024 Dec 11.

Abstract

The rising incidence of head and neck cancer represents a serious global health challenge, requiring more accurate diagnosis and innovative surgical approaches. Multimodal nonlinear optical microscopy, combining coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second-harmonic generation (SHG) with deep learning-based analysis routines, offers label-free assessment of the tissue's morphochemical composition and allows early-stage and automatic detection of disease. For clinical intraoperative application, compact devices are required. In this preclinical study, a cohort of 15 patients was examined with a newly developed rigid CARS/TPEF/SHG endomicroscope. To detect head and neck tumor from the multimodal data, deep learning-based semantic segmentation models were used. This preclinical study yields in a diagnostic sensitivity of 88% and a specificity of 96%. To combine diagnostics with therapy, machine learning-inspired image-guided selective tissue removal was used by integrating femtosecond laser ablation into the endomicroscope. This enables a powerful approach of intraoperative "seek and treat," paving the way to advanced surgical treatment.

摘要

头颈癌发病率的上升是一项严峻的全球健康挑战,需要更准确的诊断和创新的手术方法。多模态非线性光学显微镜将相干反斯托克斯拉曼散射(CARS)、双光子激发荧光(TPEF)和二次谐波产生(SHG)与基于深度学习的分析程序相结合,可对组织的形态化学组成进行无标记评估,并能早期自动检测疾病。对于临床术中应用,需要紧凑的设备。在这项临床前研究中,使用新开发的刚性CARS/TPEF/SHG内镜对15名患者进行了检查。为了从多模态数据中检测头颈肿瘤,使用了基于深度学习的语义分割模型。这项临床前研究的诊断敏感性为88%,特异性为96%。为了将诊断与治疗相结合,通过将飞秒激光消融集成到内镜中,采用了受机器学习启发的图像引导选择性组织切除。这实现了术中“寻找并治疗”的强大方法,为先进的手术治疗铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ec/11633757/628808fc9ee4/sciadv.ado9721-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验