Liu Yang, Yue Xubo, Zhang Junru, Zhai Zhenghao, Moammeri Ali, Edgar Kevin J, Berahas Albert S, Al Kontar Raed, Johnson Blake N
Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.
Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States.
ACS Appl Mater Interfaces. 2024 Dec 25;16(51):70310-70321. doi: 10.1021/acsami.4c16614. Epub 2024 Dec 11.
While some materials can be discovered and engineered using standalone self-driving workflows, coordinating multiple stakeholders and workflows toward a common goal could advance autonomous experimentation (AE) for accelerated materials discovery (AMD). Here, we describe a scalable AMD paradigm based on AE and "collaborative learning". Collaborative learning using a novel consensus Bayesian optimization (BO) model enabled the rapid discovery of mechanically optimized composite polysaccharide hydrogels. The collaborative workflow outperformed a non-collaborating AMD workflow scaled by independent learning based on the trend of mechanical property evolution over eight experimental iterations, corresponding to a budget limit. After five iterations, four collaborating clients obtained notable material performance (i.e., composition discovery). Collaborative learning by consensus BO can enable scaling and performance optimization for a range of self-driving materials research workflows driven by optimally cooperating humans and machines that share a material design objective.
虽然一些材料可以通过独立的自动驾驶工作流程来发现和设计,但协调多个利益相关者并朝着共同目标推进工作流程,可能会推动自主实验(AE)以加速材料发现(AMD)。在此,我们描述了一种基于AE和“协作学习”的可扩展AMD范式。使用新型共识贝叶斯优化(BO)模型的协作学习能够快速发现机械性能优化的复合多糖水凝胶。在八个实验迭代(对应预算限制)中,基于机械性能演变趋势,协作工作流程优于通过独立学习扩展的非协作AMD工作流程。经过五次迭代,四个协作客户获得了显著的材料性能(即成分发现)。通过共识BO进行的协作学习能够为一系列由共享材料设计目标的最佳人机协作驱动的自动驾驶材料研究工作流程实现扩展和性能优化。