Yang Jiangtao, Zhang Dongfang, Lu Yan, Mai Haixing, Wu Song, Yang Qin, Zheng Hanxiong, Yu Ruqin, Luo Hongmin, Jiang Panpan, Wu Liping, Zhong Caili, Zheng Chenqing, Yang Yanling, Cui Jiaxiang, Lei Qifang, He Zhaohui
Shenzhen Aone Medical Laboratory Co., Ltd, Shenzhen, China.
Department of Urology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
Kidney Blood Press Res. 2025;50(1):83-96. doi: 10.1159/000542263. Epub 2024 Dec 11.
Urolithiasis is characterized by a high morbidity and recurrence rate, primarily attributed to metabolic disorders. The identification of more metabolic biomarkers would provide valuable insights into the etiology of stone formation and the assessment of disease risk. The present study aimed to seek potential organic acid (OA) biomarkers from morning urine samples and explore new methods based on machine learning (ML) for metabolic risk prediction of urolithiasis.
Morning urine samples were collected from 117 healthy controls and 156 urolithiasis patients. Gas chromatography-mass spectrometry was used to obtain metabolic profiles. Principal component analysis and ML were carried out to screen robust markers and establish a prediction evaluation model.
There were 25 differential metabolites identified, such as palmitic acid,
The results suggest that OA profiles in morning urine can improve the accuracy of predicting urolithiasis risk and possibly help understand the involvement of metabolic perturbations in metabolic pathways of stone formation and to provide new insights.
尿石症的发病率和复发率较高,主要归因于代谢紊乱。识别更多的代谢生物标志物将为结石形成的病因及疾病风险评估提供有价值的见解。本研究旨在从晨尿样本中寻找潜在的有机酸(OA)生物标志物,并探索基于机器学习(ML)的尿石症代谢风险预测新方法。
收集了117名健康对照者和156名尿石症患者的晨尿样本。采用气相色谱 - 质谱联用技术获取代谢谱。进行主成分分析和机器学习以筛选稳健的标志物并建立预测评估模型。
共鉴定出25种差异代谢物,如棕榈酸、L - 焦谷氨酸、乙醛酸和酮戊二酸,主要涉及精氨酸和脯氨酸代谢、脂肪酸降解、甘氨酸、丝氨酸和苏氨酸代谢、乙醛酸和二羧酸代谢。尿OA标志物显著提高了ML模型的性能。敏感性和特异性分别高达87.50%和84.38%。受试者工作特征曲线下面积(AUC)显著提高(AUC = 0.9248)。
结果表明晨尿中的OA谱可提高尿石症风险预测的准确性,并可能有助于了解代谢紊乱在结石形成代谢途径中的作用,提供新的见解。