Suppr超能文献

通过机器学习和泛癌蛋白质基因组学绘制人类癌症功能网络

Mapping the functional network of human cancer through machine learning and pan-cancer proteogenomics.

作者信息

Shi Zhiao, Lei Jonathan T, Elizarraras John M, Zhang Bing

机构信息

Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.

出版信息

Nat Cancer. 2025 Jan;6(1):205-222. doi: 10.1038/s43018-024-00869-z. Epub 2024 Dec 11.

Abstract

Large-scale omics profiling has uncovered a vast array of somatic mutations and cancer-associated proteins, posing substantial challenges for their functional interpretation. Here we present a network-based approach centered on FunMap, a pan-cancer functional network constructed using supervised machine learning on extensive proteomics and RNA sequencing data from 1,194 individuals spanning 11 cancer types. Comprising 10,525 protein-coding genes, FunMap connects functionally associated genes with unprecedented precision, surpassing traditional protein-protein interaction maps. Network analysis identifies functional protein modules, reveals a hierarchical structure linked to cancer hallmarks and clinical phenotypes, provides deeper insights into established cancer drivers and predicts functions for understudied cancer-associated proteins. Additionally, applying graph-neural-network-based deep learning to FunMap uncovers drivers with low mutation frequency. This study establishes FunMap as a powerful and unbiased tool for interpreting somatic mutations and understudied proteins, with broad implications for advancing cancer biology and informing therapeutic strategies.

摘要

大规模组学分析揭示了大量的体细胞突变和癌症相关蛋白,这对其功能解读提出了巨大挑战。在此,我们提出一种基于网络的方法,该方法以FunMap为核心,FunMap是一个泛癌功能网络,它利用监督机器学习,基于来自11种癌症类型的1194名个体的广泛蛋白质组学和RNA测序数据构建而成。FunMap包含10525个蛋白质编码基因,以前所未有的精度连接功能相关基因,超越了传统的蛋白质-蛋白质相互作用图谱。网络分析可识别功能性蛋白质模块,揭示与癌症特征和临床表型相关的层次结构,深入了解已确定的癌症驱动因素,并预测研究较少的癌症相关蛋白的功能。此外,将基于图神经网络的深度学习应用于FunMap可发现低突变频率的驱动因素。本研究将FunMap确立为一种强大且无偏见的工具,用于解释体细胞突变和研究较少的蛋白质,对推进癌症生物学和为治疗策略提供信息具有广泛意义。

相似文献

1
Mapping the functional network of human cancer through machine learning and pan-cancer proteogenomics.
Nat Cancer. 2025 Jan;6(1):205-222. doi: 10.1038/s43018-024-00869-z. Epub 2024 Dec 11.
3
Pan-cancer proteogenomics connects oncogenic drivers to functional states.
Cell. 2023 Aug 31;186(18):3921-3944.e25. doi: 10.1016/j.cell.2023.07.014. Epub 2023 Aug 14.
4
A proteogenomics data-driven knowledge base of human cancer.
Cell Syst. 2023 Sep 20;14(9):777-787.e5. doi: 10.1016/j.cels.2023.07.007. Epub 2023 Aug 23.
5
A graph neural network approach for hierarchical mapping of breast cancer protein communities.
BMC Bioinformatics. 2025 Jan 21;26(1):23. doi: 10.1186/s12859-024-06015-x.
6
MONet: cancer driver gene identification algorithm based on integrated analysis of multi-omics data and network models.
Exp Biol Med (Maywood). 2025 Feb 4;250:10399. doi: 10.3389/ebm.2025.10399. eCollection 2025.
7
Improving the identification of cancer driver modules using deep features learned from multi-omics data.
Comput Biol Med. 2025 Jan;184:109322. doi: 10.1016/j.compbiomed.2024.109322. Epub 2024 Nov 8.
10
Cancer networks and beyond: interpreting mutations using the human interactome and protein structure.
Semin Cancer Biol. 2013 Aug;23(4):219-26. doi: 10.1016/j.semcancer.2013.05.002. Epub 2013 May 13.

本文引用的文献

1
WebGestalt 2024: faster gene set analysis and new support for metabolomics and multi-omics.
Nucleic Acids Res. 2024 Jul 5;52(W1):W415-W421. doi: 10.1093/nar/gkae456.
2
Proteogenomic data and resources for pan-cancer analysis.
Cancer Cell. 2023 Aug 14;41(8):1397-1406. doi: 10.1016/j.ccell.2023.06.009.
3
Proteomics of adjacent-to-tumor samples uncovers clinically relevant biological events in hepatocellular carcinoma.
Natl Sci Rev. 2023 Jun 2;10(8):nwad167. doi: 10.1093/nsr/nwad167. eCollection 2023 Aug.
4
Cancer driver mutations: predictions and reality.
Trends Mol Med. 2023 Jul;29(7):554-566. doi: 10.1016/j.molmed.2023.03.007. Epub 2023 Apr 17.
5
p53 mutation and deletion contribute to tumor immune evasion.
Front Genet. 2023 Feb 20;14:1088455. doi: 10.3389/fgene.2023.1088455. eCollection 2023.
6
Single-cell proteomics enabled by next-generation sequencing or mass spectrometry.
Nat Methods. 2023 Mar;20(3):363-374. doi: 10.1038/s41592-023-01791-5. Epub 2023 Mar 2.
7
CORUM: the comprehensive resource of mammalian protein complexes-2022.
Nucleic Acids Res. 2023 Jan 6;51(D1):D539-D545. doi: 10.1093/nar/gkac1015.
9
MAB21L4 Deficiency Drives Squamous Cell Carcinoma via Activation of RET.
Cancer Res. 2022 Sep 2;82(17):3143-3157. doi: 10.1158/0008-5472.CAN-22-0047.
10
Understudied proteins: opportunities and challenges for functional proteomics.
Nat Methods. 2022 Jul;19(7):774-779. doi: 10.1038/s41592-022-01454-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验