Liu Shiheng, Su Tiantian, Xia Xian, Zhou Z Hong
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
Nature. 2025 Jan;637(8048):1261-1271. doi: 10.1038/s41586-024-08324-w. Epub 2024 Dec 11.
Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder marked by progressive muscle wasting leading to premature mortality. Discovery of the DMD gene encoding dystrophin both revealed the cause of DMD and helped identify a family of at least ten dystrophin-associated proteins at the muscle cell membrane, collectively forming the dystrophin-glycoprotein complex (DGC). The DGC links the extracellular matrix to the cytoskeleton, but, despite its importance, its molecular architecture has remained elusive. Here we determined the native cryo-electron microscopy structure of rabbit DGC and conducted biochemical analyses to reveal its intricate molecular configuration. An unexpected β-helix comprising β-, γ- and δ-sarcoglycan forms an extracellular platform that interacts with α-dystroglycan, β-dystroglycan and α-sarcoglycan, allowing α-dystroglycan to contact the extracellular matrix. In the membrane, sarcospan anchors β-dystroglycan to the β-, γ- and δ-sarcoglycan trimer, while in the cytoplasm, β-dystroglycan's juxtamembrane fragment binds dystrophin's ZZ domain. Through these interactions, the DGC links laminin 2 to intracellular actin. Additionally, dystrophin's WW domain, along with its EF-hand 1 domain, interacts with α-dystrobrevin. A disease-causing mutation mapping to the WW domain weakens this interaction, as confirmed by deletion of the WW domain in biochemical assays. Our findings rationalize more than 110 mutations affecting single residues associated with various muscular dystrophy subtypes and contribute to ongoing therapeutic developments, including protein restoration, upregulation of compensatory genes and gene replacement.
杜兴氏肌营养不良症(DMD)是一种严重的X连锁隐性疾病,其特征为进行性肌肉萎缩,最终导致过早死亡。编码抗肌萎缩蛋白的DMD基因的发现,不仅揭示了DMD的病因,还帮助在肌肉细胞膜上鉴定出了一个至少由十种抗肌萎缩蛋白相关蛋白组成的家族,它们共同构成了抗肌萎缩蛋白-糖蛋白复合物(DGC)。DGC将细胞外基质与细胞骨架连接起来,尽管其十分重要,但其分子结构一直难以捉摸。在此,我们确定了兔DGC的天然冷冻电子显微镜结构,并进行了生化分析,以揭示其复杂的分子构型。一个由β-、γ-和δ-肌聚糖组成的意想不到的β-螺旋形成了一个细胞外平台,该平台与α-肌营养不良蛋白聚糖、β-肌营养不良蛋白聚糖和α-肌聚糖相互作用,使α-肌营养不良蛋白聚糖能够接触细胞外基质。在细胞膜中,肌膜蛋白将β-肌营养不良蛋白聚糖锚定到β-、γ-和δ-肌聚糖三聚体上,而在细胞质中,β-肌营养不良蛋白聚糖的近膜片段与抗肌萎缩蛋白的ZZ结构域结合。通过这些相互作用,DGC将层粘连蛋白2与细胞内的肌动蛋白连接起来。此外,抗肌萎缩蛋白的WW结构域及其EF手型1结构域与α-肌营养不良蛋白结合蛋白相互作用。在生化分析中,通过删除WW结构域证实,一个定位到WW结构域的致病突变削弱了这种相互作用。我们的研究结果解释了110多种影响与各种肌营养不良症亚型相关的单个残基的突变,并有助于正在进行的治疗开发,包括蛋白质修复、补偿基因上调和基因替代。