Duerst Ricarda, Schöley Jonas
Max Planck Institute for Demographic Research, Konrad-Zuse-Straße 1, 18057, Rostock, Germany.
University of Helsinki, Fabianinkatu 33, 00014, Helsinki, Finland.
Popul Health Metr. 2024 Dec 11;22(1):34. doi: 10.1186/s12963-024-00355-9.
In the winter of 2022/2023, excess death estimates for Germany indicated a 10% elevation, which has led to questions about the significance of this increase in mortality. Given the inherent errors in demographic forecasting, the reliability of estimating a 10% deviation is questionable. This research addresses this issue by analyzing the error distribution in forecasts of weekly deaths. By deriving empirical prediction intervals, we provide a more accurate probabilistic study of weekly expected and excess deaths compared to the use of conventional parametric intervals.
Using weekly death data from the Short-term Mortality Database (STMF) for 23 countries, we propose empirical prediction intervals based on the distribution of past out-of-sample forecasting errors for the study of weekly expected and excess deaths. Instead of relying on the suitability of parametric assumptions or the magnitude of errors over the fitting period, empirical prediction intervals reflect the intuitive notion that a forecast is only as precise as similar forecasts in the past turned out to be. We compare the probabilistic calibration of empirical skew-normal prediction intervals with conventional parametric prediction intervals from a negative-binomial GAM in an out-of-sample setting. Further, we use the empirical prediction intervals to quantify the probability of detecting 10% excess deaths in a given week, given pre-pandemic mortality trends.
The cross-country analysis shows that the empirical skew-normal prediction intervals are overall better calibrated than the conventional parametric prediction intervals. Further, the choice of prediction interval significantly affects the severity of an excess death estimate. The empirical prediction intervals reveal that the likelihood of exceeding a 10% threshold of excess deaths varies by season. Across the 23 countries studied, finding at least 10% weekly excess deaths in a single week during summer or winter is not very unusual under non-pandemic conditions. These results contrast sharply with those derived using a standard negative-binomial GAM.
Our results highlight the importance of well-calibrated prediction intervals that account for the naturally occurring seasonal uncertainty in mortality forecasting. Empirical prediction intervals provide a better performing solution for estimating forecast uncertainty in the analyses of excess deaths compared to conventional parametric intervals.
在2022/2023年冬季,德国的超额死亡估计显示死亡率上升了10%,这引发了关于这一死亡率上升意义的疑问。鉴于人口预测中存在固有误差,估计10%偏差的可靠性值得怀疑。本研究通过分析每周死亡人数预测中的误差分布来解决这一问题。通过推导经验预测区间,与使用传统参数区间相比,我们对每周预期死亡人数和超额死亡人数进行了更准确的概率研究。
利用来自23个国家的短期死亡率数据库(STMF)的每周死亡数据,我们基于过去样本外预测误差的分布提出经验预测区间,用于研究每周预期死亡人数和超额死亡人数。经验预测区间不依赖于参数假设的适用性或拟合期内误差的大小,而是反映了一种直观的观念,即一个预测的精确程度仅取决于过去类似预测的结果。我们在样本外设置中,将经验偏态正态预测区间的概率校准与负二项广义相加模型的传统参数预测区间进行比较。此外,我们利用经验预测区间,根据疫情前的死亡率趋势,量化在给定一周内检测到10%超额死亡人数的概率。
跨国分析表明,经验偏态正态预测区间总体上比传统参数预测区间校准得更好。此外,预测区间的选择显著影响超额死亡估计的严重程度。经验预测区间显示,超过10%超额死亡阈值的可能性因季节而异。在研究的23个国家中,在非疫情条件下,夏季或冬季的某一周内发现至少10%的每周超额死亡人数并非非常罕见。这些结果与使用标准负二项广义相加模型得出的结果形成鲜明对比。
我们的结果强调了校准良好的预测区间的重要性,这些区间考虑了死亡率预测中自然存在的季节性不确定性。与传统参数区间相比,经验预测区间为估计超额死亡分析中的预测不确定性提供了性能更好的解决方案。