Suppr超能文献

使用基于短时间全原子分子动力学的自适应粗粒弹性网络模型增强构象采样。

Enhanced Conformational Sampling with an Adaptive Coarse-Grained Elastic Network Model Using Short-Time All-Atom Molecular Dynamics.

机构信息

RIKEN Center for Computational Science, Kobe 650-0047, Japan.

Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.

出版信息

J Chem Theory Comput. 2022 Apr 12;18(4):2062-2074. doi: 10.1021/acs.jctc.1c01074. Epub 2022 Mar 24.

Abstract

Compared to all-atom molecular dynamics (AA-MD) simulations, coarse-grained (CG) MD simulations can significantly reduce calculation costs. However, existing CG-MD methods are unsuitable for sampling structures that depart significantly from the initial structure without any biased force. In this study, we developed a new adaptive CG elastic network model (ENM), in which the dynamic cross-correlation coefficient based on short-time AA-MD of at most ns order is considered. By applying Bayesian optimization to search for a suitable parameter among the vast parameter space of adaptive CG-ENM, we succeeded in reducing the searching cost to approximately 10% of those for random sampling and exhaustive sampling. To evaluate the performance of adaptive CG-ENM, we applied the new methodology to adenylate kinase (ADK) and glutamine binding protein (GBP) in the apo state. The results showed that the structural ensembles explored by adaptive CG-ENM could be considerably more diverse than those by conventional ENMs with enhanced sampling such as temperature replica exchange MD and long-time AA-MD of 1 μs. In particular, some of the structures sampled by adaptive ENM are relatively close to the holo-type structures of ADK and GBP. Furthermore, as a challenging task, to demonstrate the advantages of the CG model with lower calculation cost, we applied our new methodology to a larger biomolecule, integrin (αV) in the inactive state. Then, we sampled various structural ensembles, including extended structures that are apparently different from inactive ones.

摘要

与全原子分子动力学(AA-MD)模拟相比,粗粒化(CG)MD 模拟可以显著降低计算成本。然而,现有的 CG-MD 方法不适合对初始结构有较大偏离的结构进行采样,而无需任何有偏力。在这项研究中,我们开发了一种新的自适应 CG 弹性网络模型(ENM),其中考虑了基于最多 ns 阶的短时间 AA-MD 的动态互相关系数。通过应用贝叶斯优化在自适应 CG-ENM 的广阔参数空间中搜索合适的参数,我们成功地将搜索成本降低到随机采样和穷举采样的约 10%。为了评估自适应 CG-ENM 的性能,我们将新方法应用于apo 状态下的腺苷酸激酶(ADK)和谷氨酰胺结合蛋白(GBP)。结果表明,自适应 CG-ENM 探索的结构集合比传统的 ENM 更具多样性,增强了采样效果,如温度副本交换 MD 和 1μs 的长时间 AA-MD。特别是,自适应 ENM 采样的一些结构与 ADK 和 GBP 的全酶型结构相对接近。此外,作为一项具有挑战性的任务,为了展示具有较低计算成本的 CG 模型的优势,我们将我们的新方法应用于更大的生物分子,即失活状态下的整合素(αV)。然后,我们采样了各种结构集合,包括与失活结构明显不同的扩展结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82eb/9009098/96bd82563b32/ct1c01074_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验