Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen, Germany.
Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Nat Commun. 2021 Apr 13;12(1):2231. doi: 10.1038/s41467-021-22296-9.
Recent research indicates a severe discrepancy between oxygen evolution reaction catalysts dissolution in aqueous model systems and membrane electrode assemblies. This questions the relevance of the widespread aqueous testing for real world application. In this study, we aim to determine the processes responsible for the dissolution discrepancy. Experimental parameters known to diverge in both systems are individually tested for their influence on dissolution of an Ir-based catalyst. Ir dissolution is studied in an aqueous model system, a scanning flow cell coupled to an inductively coupled plasma mass spectrometer. Real dissolution rates of the Ir OER catalyst in membrane electrode assemblies are measured with a specifically developed, dedicated setup. Overestimated acidity in the anode catalyst layer and stabilization over time in real devices are proposed as main contributors to the dissolution discrepancy. The results shown here lead to clear guidelines for anode electrocatalyst testing parameters to resemble realistic electrolyzer operating conditions.
最近的研究表明,在水相模型体系和膜电极组件中,氧气析出反应催化剂的溶解存在严重差异。这就质疑了广泛应用于实际应用的水相测试的相关性。在本研究中,我们旨在确定导致溶解差异的过程。对两个系统中已知存在差异的实验参数进行单独测试,以研究其对 Ir 基催化剂溶解的影响。在扫描流动池与电感耦合等离子体质谱仪耦合的水相模型体系中研究 Ir 的溶解。使用专门开发的专用设备测量 Ir OER 催化剂在膜电极组件中的实际溶解速率。提出阳极催化剂层中过高的酸度和实际器件中随时间的稳定化是导致溶解差异的主要因素。这里展示的结果为阳极电催化剂测试参数提供了明确的指导,以类似于实际电解槽的操作条件。